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dr. A. Di Bucchianico Technische Universiteit Eindhoven
dr. M. Plantevit Université Claude Bernard Lyon 1
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Summary

Exceptional Model Mining (EMM) is a local pattern mining approach that
cares about how differently a model would perform in subpopulations, as com-
pared to the same model but fitted on the whole data. Subgroup, model class,
quality measure and search algorithm are the four essential components for
EMM.

Assume a dataset consists of a set of descriptive variables and a set of tar-
get variables, a subgroup is a subset of data that are covered by a description
defined in terms of descriptive variables. A model class is an arbitrary model
defined on the target variables, e.g., regression model or classification model.
A quality measure is a function that assigns a numeric value to a description,
quantifying the difference of model’s performance on the whole data and the
subgroups supporting the description. A search algorithm can be guided by
a quality measure to explore the space of descriptions (defined over descrip-
tive variables) evaluated in terms of the performance of the chosen model ,
which allows us to find the top-Q (Q is an user-defined integer) exceptional
subgroups.

In this dissertation, we study the problem of EMM with a focus on the
uncertainty. We are particularly interested in studying the underlying mech-
anisms that determine the exceptionality of subgroups with observational
datasets. By understanding such mechanisms, we are able to capture the uncer-
tainty in EMM. In EMM, the fundamental assumption is that the exceptional
performance of a model on a subgroup is governed by the dependency between
target variables and by the dependency between descriptive variables and target
variables. Description language, model class, quality measure are the three es-
sential parts that determine the computation of exceptionality scores; search
algorithm is the essential part that identifies the top exceptional subgroups
guided by the computed exceptional scores. We develop several probabilistic
models and employ statistical methods to quantify the exceptionality consider-
ing the uncertainty in dependency modeling with limited records. With several
practical applications, we show how our methods can help users understand
the different forms of exceptional behavior. Specifically, we propose to study
this problem in four aspects:

• Uncertainty in multi-modal dependency modeling. When target vari-
ables consist of multi-modal interactions, such as sptial, temporal and
word topics, it is difficult to capture the exceptionality of behavior in
subgroups. Our main contribution is to encode the uncertainty in multi-
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modal dependency by explicitly modeling the data generating process,
and to provide a Bayesian inference method to estimate the latent factors
in the generating process. In this process, we propose new a model class
for nulti-modal interactions. By comparing the posterior distributions
of the model parameters, we propose a quality measure to capture the
exceptionality of multi-modal behavior in subgroups (Du et al., 2020b).

• Uncertainty in high-dimensional and heterogeneous dependency mod-
eling. Our main contribution is proposing tools to model the compli-
cated interactions between target variables, especially when the dimen-
sionality of targets is very high. The aim is to help user understand
how these complicated interactions could reflect the running mechanism
of a model and provide explainable knowledge for people to improve
real-world applications. We propose new model classes that explicitly
represent the dependencies between variables and involved uncertain-
ties. The practical studies are two-fold: on the one hand, our research is
applied to discover subgroups of students, whose study behavior is ex-
ceptionally different from study behavior of those students in the whole
data (Du et al., 2018). This provides insights to the practitioners in ed-
ucational areas to make efficient policies improving the study grades of
students. On the other hand, our research on fairness in network repre-
sentation learning suggests that current network representation models
like Node2vec (Grover and Leskovec, 2016), Deepwalk (Perozzi et al.,
2014), would lead to biased performance on those disadvantaged sub-
groups (Du et al., 2020c). A further improvement is needed to ensure
the learning of both a fair and structure-preserving network representa-
tion model.

• Uncertainty in individual causal dependency. Due to the observational
equivalence in the historical datasets, our algorithm might report spu-
rious exceptional subgroups. It is required to model the causal depen-
dency and capture the uncertainty in causal relations. In order to solve
the problem of predicting treatment outcome with observational data,
we propose a neural network framework implementing the potential out-
come framework (Rosenbaum and Rubin, 1983). Our work can be ap-
plied to evaluate whether a policy or clinic treatment is sufficiently ef-
fective with historical data. This can prevent the high costs of doing A/B
tests or randomizing controlled trials (RCTs) (Du et al., 2019).

• Uncertainty in local causal dependency. Previous research either fo-
cuses on modeling the dependencies between target variables or assumes
all description variables are correlated with all target variables. In this
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study, we argue that properly capturing the uncertainty in the relation
between attributes and targets can thoroughly boost the EMM perfor-
mance. We call this relation Local Causal Dependency (LCD) and en-
code it with a causal graph language. We propose D-graph, a causal
graph with extra nodes pointing to descriptive variables, which indicate
the change of local mechanisms. We argue that the changing of local
mechanisms in a causal graph lead to the changing of model’s perfor-
mance (Du et al., 2020a). This method can prevent the algorithm from
searching the description space where the attributes do not influence the
performance of the model, which could substantially boost the EMM
process. At the same time, this method can improve the efficiency of
retrieving non-redundant exceptional subgroups.



1
Introduction

“A tautology’s truth is certain, a proposition’s possible, a contradiction’s im-
possible. Certain, possible, impossible: here we have the first indication of the
scale that we need in the theory of probability.”

Tractatus Logico-Philosophicus,
Ludwig Wittgenstein, 1922.

1.1 Background

In this chapter, we briefly review the Local Pattern Mining methods (Berthold
et al., Hand, 2002) such as Subgroup Discovery (SD) (Atzmueller, 2015) and
introduce the Exceptional Model Mining (EMM) (Duivesteijn et al., 2016, Le-
man et al., 2008) on which we focus throughout the dissertation. we demon-
strate the main research questions, motivations and contributions by introduc-
ing the uncertainty in different forms of dependency modeling. Insights with
several practical studies are provided, such as multi-modal dependency mod-
eling and Local Causal Dependency (LCD) modeling.

1.1.1 Local Pattern Mining

The increasing amounts of data bring both new opportunities and chal-
lenges for data mining / machine learning research. From the aspect of op-
portunity, data mining / machine learning techniques could be broadly ap-
plied to real-world scenarios such as autonomous driving (Levinson et al.,
2011), business intelligence (Negash and Gray, 2008), health care (Dua et al.,
2014), finance (Kotsiantis et al., 2006), sports (Silver et al., 2017) and video
games (Vinyals et al., 2019); From the aspect of challenge, traditional math-
ematical models are required to evolve from ideal assumptions to complex

1



2 CHAPTER 1. INTRODUCTION

real-world data with missing information, imbalanced distribution or noisy la-
bels. However, it is nearly impossible to tackle all the challenges with one
universal model (Wolpert and Macready, 1997). The possible solution is to
evolve the developed dedicated methodology, tackling the challenges step by
step with specific tasks. One of the most important tasks is to extract useful
information from the large amount of data. By referring to useful information,
here we mean useful for downstream tasks like classification and clustering,
or for other tasks like multi-task learning and domain adaptation, or to better
understand the data (Goodfellow et al., 2016). In particular, the useful infor-
mation is demonstrated by patterns of interest with specific form of represen-
tations (Duivesteijn et al., 2016).

The specific form of representation we are going to introduce is called
local pattern. Local Pattern Mining (LPM) (Hand, 2002, Morik et al., 2005)
is a subfield of data mining, focused on discovering subsets of the dataset at
hand which are interesting with regard to some quality measures. Typically,
a restriction is imposed on what kind of interesting subsets we are looking
for: only those subsets that can be formulated within a predefined description
language are allowed. A common choice for this language is conjunctions
of conditions on attributes of the dataset. Hence, if the records covered by a
description is interesting for people, then results for LPM is shown in the form:

Age ≥ 45 ^ Smoker = yes  interesting

This ensures that the results we find with an LPM method are relatively easy to
interpret for a domain expert: the subsets will be expressed in terms of quan-
tities with which the expert is familiar. We call a subset that can be expressed
in such a way a subgroup. Specifically, we assume a dataset Ω: a bag of N
records r ∈ Ω of the form r = (a1, . . . ak, l1, . . . , lm), where k and m are
positive integers. We call a1, . . . , ak the descriptive attributes or descriptors
of r, and l1, . . . , lm the target attributes or targets of r. The descriptive at-
tributes are taken from an unrestricted domain A. Mathematically, we define
descriptions as functions D : A → {0, 1}. A description D covers a record ri

if and only if D(ai1, · · · , aik) = 1.

Definition 1.1.1 A subgroup corresponding to a description D is the bag of
records SD ⊆ Ω that D covers, i.e.:

SD =
{
ri ∈ Ω

∣∣D(ai1, . . . , a
i
k) = 1

}
This merely formalizes the standard LPM conditions: we seek subgroups that
are defined in terms of conditions on the descriptors, hence our results are
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interpretable. Those conditions select a subset of the records of the dataset:
those records that satisfy all conditions.

1.1.2 Subgroup Discovery

With regard to the different forms of interestingness measures, different LPM
methods can give different results of subgroups. The most famous form of
LPM is Frequent Itemset Mining (FIM) (Agrawal et al., 1996), where inter-
estingness is measured by the exceptional frequency of occurrence: records
that occur more frequently than a chosen threshold are considered interesting.
Hence, FIM finds results of the form:

Age ≥ 45 ^ Smoker = yes  (high frequency)

If we are particularly interested in the patterns related to one target, then
we need to reformulate the interestingness measure. The task of SD (Klösgen,
1996, Wrobel, 1997, Herrera et al., 2011) typically focuses on one binary at-
tribute of the dataset as the target: subgroups are regarded as interesting if
this one target has an unusual distribution, as compared to its distribution on
the whole dataset. In our example, if the target column describes whether the
person develops lung cancer or not, SD finds results of the form:

Smoker = yes lung cancer = yes

Age ≤ 25 lung cancer = no

These subgroups make intuitive sense in terms of our knowledge of the do-
main. Smokers have a higher-than-usual incidence of lung cancer. People
under the age of 25 often have low chance to develop lung cancer, so the inci-
dence in this group will be lower. When the connection between subgroup and
unusual target distribution is not immediately intuitively clear, the result of SD
is a new hypothesis to be investigated by the domain experts.

1.1.3 Exceptional Model Mining

In the general concept of local pattern mining and subgroup discovery which
cares about the particular distribution of a single target variable, we focus on
two paradigms: summarization and distinctness detection. On the one hand,
by defining a subgroup, we are able to represent a subset of the data in terms of
a specific pattern language; on the other hand, by defining an interestingness
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measure, we can measure the distinctness of patterns among different sub-
groups. However, if the target of interest consists of multiple variables with
complex interactive relations, further paradigms are required, e.g. dependency
modeling. Here we step into the field of EMM (Duivesteijn et al., 2016) .

EMM can be seen as an extension of SD: instead of a single target, EMM
typically selects multiple target columns. A specific kind of interaction be-
tween these targets is captured by the definition of a model class. EMM finds
a subgroup to be interesting when this interaction is exceptional, as captured
by the definition of a quality measure.

Model Class In order to describe the characteristics of a local pattern, we
need to choose a model class to represent the interactive relations between
target variables in the associated subgroup. The model could be a statistic
similar to what we done in subgroup discovery for a single target, e.g., mean
and variance for multiple variables. It also can be a function that describes the
dependency between multiple variables, e.g. modeling one target variable as a
linear combination of the other target variables,

lm = wᵀl1:m−1,

where w represents a vector of parameters w ∈ Rm−1. The associated hy-
pothesis space W = Rm−1 is the model class we care about. Depending on
what kinds of interactive relations we are interested in and the tasks we care
about, different model classes could be involved. For instance, we can employ
Bayesian networks (Duivesteijn et al., 2010) as the model class to investigate
the mutual interactions for conditional dependence relations; we can employ
a classification model (Duivesteijn and Thaele, 2014) to investigate the per-
formance of classifiers across different subgroups. In addition, model classes
can help us to capture the interestingness of subgroups on dataset with more
complex data structures. For example, first-order Markov chains have been
introduced as a model class for sequential data (Lemmerich et al., 2016).

Quality Measure Defining a model class allows us to describe specific char-
acteristics in subgroups. In order to capture the interestingness, we need to de-
fine evaluation based on those characteristics, which is embodied by the quality
measure:

Definition 1.1.2 A quality measure is a function ϕ : D → R that assigns a
numeric value to a description D. Occasionally, we use ϕ(S) to refer to the
quality of the induced subgroup: ϕ(SD) = ϕ(D).
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Typically, a quality measure assesses the subgroup at hand based on some
interaction on the target columns. Hence, a description and a quality measure
interact through different partitions of the dataset columns; the former focuses
on the descriptors, the latter focuses on the targets, and they are linked through
the subgroup. According to how a quality measure takes into account with
targets, we can classify them into direct and indirect categories.

Direct Quality Measure A direct quality measure employ statistics on the
raw target values. An example is WRAcc (Lavrač et al., 1999, van Leeuwen
and Knobbe, 2011) for a binary target variable:

ϕWRAcc(S) =
|S|
|Ω|

(1S − 1Ω), (1.1)

where 1S (1Ω) represents the fraction of ones in the subgroup (whole dataset)
and |S| —Ω— represents the number of records covered by the subgroup
(whole dataset, i.e. = N). Another example, for a numeric target variable, is
the z-score (Mampaey et al., 2015):

ϕzscore(S) =

√
|S|
σ0

(µ− µ0), (1.2)

where µ0, σ0 represent the mean and standard deviation of the single target
variable in the whole dataset, µ,

√
|S| represent the mean of the single target

variable and the square root of number of records covered in the subgroup.
Though these quality measures are defined for tabular data, some can also
be adjusted for complex data structures. For instance, WRAcc was adjusted to
evaluate characteristics in subgraphs (Bendimerad et al., 2016). The advantage
of a direct quality measure is that the exceptionality can be easily computed
and intuitively represented. The disadvantages are two-fold: on the one hand,
when the dimension of the space for target variables is very high, it is difficult
to compute the statistics directly; on the other hand, such statistics may not
reflect the dissimilarity between distribution of targets in subgroups properly.

Indirect Quality Measure An indirect quality measure derives evaluations
on the parameter space to compare how the models are dissimilar from each
other. For instance, when two numerical columns are selected as the targets,
we can consider Pearson’s correlation ρ as the model class. Quality measures
for this model class could be ρ itself (to find subgroups on which the target
correlation is unusually high), −ρ (to find subgroups with unusually strongly
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negative target correlation), |ρ| (to find subgroup with unusually strong positive
or negative target correlation), or −|ρ| (to find subgroups with unusually weak
target correlation). Hence, the model class fixes the type of target interaction
in which we are interested, and the quality measure fixes what, within this type
of interaction, we find interesting.

Another kind of indirect quality measure is comparing the performance
of the associated model in subgroups and in the whole data. This kind of
exceptionality is performance based. For instance Average (Sub-)-Ranking
Loss (Duivesteijn and Thaele, 2014) is proposed for testing how well the pre-
diction of a soft classifier and the ground truth are aligned:

ϕrasl(S) =

∑|S|
i=1 1{bi = 1} · PEN |S|i (S)∑N

i=1 1{bi = 1}

−
∑N

i=1 1{bi = 1} · PENN
i (Ω)∑N

i=1 1{bi = 1}
,

(1.3)

PENΩ
i =

N∑
j=i+1

1{bj = 0 ∧ rj > ri}

+
1

2

N∑
j=i+1

1{bj = 0 ∧ rj = ri},

(1.4)

where b represents the binary ground truth label and r represents real-value
predictions of the classifier. Lower penalty terms indicate better representation
of ground truth by predictions. Lower quality values indicates less exception-
ality.

Search Strategy Description language, model class and quality measure en-
able us to compute the interestingness of a subset from datasets. However,
we still need to search in the description space in order to find the most inter-
esting subgroups. The combination and conjunction of descriptions will lead
to the pattern explosion problem (Meeng et al., 2014), hence, a smart search
strategy would allow our algorithms to adapt to large datasets. The first prin-
ciple to construct such a smart search strategy is the trade-off between infor-
mation loss and search efficiency. The state-of-the-art consists of three ways
for search strategy: exhaustive search (Atzmueller and Puppe, 2006), heuristic
search (Bosc et al., 2018) and sampling search (Boley et al., 2011). Exhaus-
tive search algorithms minimize the information loss by trying to enumerate
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all the possible patterns in the search space. However, it is unfeasible to do
such an exhaustive enumeration in large datasets and when the search space
is infinite, e.g. continuous numeric space. Heuristic search algorithms focus
on balancing the trade-off between exploration and exploitation, which allows
them to be scaled to large datasets (Mampaey et al., 2012). The disadvantages
of heuristic algorithms are that there is no guarantee on how the highest inter-
estingness score is approximated and how far we are from that score. Sampling
search algorithms focus on simulating a distribution of interestingness scores
with respect to the support of pattern space. There are mainly two sampling
strategies: input space sampling and output space sampling. The former fo-
cuses on sampling from the records of the datasets to construct the patterns of
interest (Toivonen, 1996), the latter focuses on sampling from the pattern / de-
scription space directly (Al Hasan and Zaki, 2009). The limitation of sampling
search algorithm is that only specific interestingness can be considered, e.g.
dense neighborhood patterns with a dense measure (Giacometti and Soulet,
2018).

In this research, considering subgroups select subsets of the dataset at
hand, and many such subsets exist in large amounts of data, we need to employ
a search strategy to ensure that we find good results in a reasonable amount of
time. Hence, we only focus on heuristic search algorithms for the practical ap-
plication. Beam search is chosen as the main search algorithm. For instance,
we consider the beam search algorithm as outlined in (Duivesteijn et al., 2016,
Algorithm 1). This algorithm makes a trade-off between a pure greedy search
which is likely to converge to a local optimal solution, and an exhaustive search
for which it is very difficult to find the global optimum within limited time for
the large scale datasets. Beam search selects candidate subgroups in a level-
wise manner, by imposing a single condition on a single attribute at each step
of the search. In subsequent steps, candidates with high qualities are refined,
by attempting to extend each of these candidates with all possible additional
single conditions on a single attribute, and evaluating the results. Rather than
the purely greedy approach which would refine the single most promising can-
didate at each step, beam search refines a fixed number w (the beam width) of
most promising candidates at each step. Larger w encourages the algorithm
to explore more possibilities to escape local optima, which would take longer
time. An additional parameter of beam search is the number d (the search
depth), which sets an upper limit to the number of steps in the search process.
Hence, by design, any subgroup resulting from a beam search procedure must
be defined as a conjunction of at most d conditions on single attributes. Larger
d implies more complex descriptions and smaller d enables the subgroups to
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Figure 1.1: General process of EMM.

be easily interpreted, but has a more limited selectivity, fewer subgroups can
be delimited.

1.2 Motivation

In the previous section, we have introduced the fundamental components of
EMM. The standard research problem of EMM can be formulated as:

Problem 1.2.1 Given a dataset Ω, a description language D, a model class Φ
and a quality measure ϕ, our task is to find a collection of Q descriptions h =
{D1, . . . , Dq}, such that ∀D′ ∈ D \ h, ϕ

(
Φ(SD′)

)
< ϕ

(
Φ(SD)

)
, ∀D ∈ h.

In Figure 1.1, we demonstrate the general process for solving this problem un-
der the standard EMM framework. By defining a description language, we are
able to formulate subgroups in terms of attribute variables. Coherent records
covered by the same description are employed to learn the specific model re-
garding to the model class. Then a quality measure function is used to derive a
real-valued score for the performance of the model on each subgroup. Finally,
a search algorithm is applied to find the top-Q most exceptional subgroups
guided by quality scores. With this framework, we can fulfill specific tasks
by properly choosing the model class, quality measure and/or search algo-
rithm. As we introduced in the previous section, one of the most important
tasks is to find interesting patterns in particular form of representations from
a given dataset. Nevertheless, there is one important question that needs to be
answered: how certain are we about the quality score computed in this pro-
cess with the dataset at hand? The other form of this question can be formed
as, how to capture the uncertainty in dependency modeling with observational
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data. Because models trained on limited data would have the over-confidence
problem (Guo et al., 2017). Properly solving this problem is non-trivial. It can
help people avoid black-box learning without knowing what indeed happens
behind the number and provide fairness, accountability and transparency to the
machine learning models. In particular, properly capturing the uncertainty can
prevent us from being misled by false discoveries. There are three sources of
uncertainty in the EMM process:

• dependency between attribute variables and target variables;
• dependency between target variables;
• dependency between quality scores.

Below we give an example to show how dependency between attributes and
targets could lead to false discoveries, if our algorithms ignore the underlying
causal mechanisms.

Example 1 A National Supported Work Program studies the employment
status (Y ) conditioning on the status of job training (X) (LaLonde, 1986,
Smith and Todd, 2005). Age (Z1), educational level (Z2), and wealth (Z3)
of each individual are measured. Wealth affects the propensity that a person
chooses to join the job training. Educational level and age jointly affect the
employment status. Social economic situation (U1), which is not measured,
affects both wealth and job training. We assume the data generating process
is:

u1 ∼ N (0, 1),

z1 ∼ N (30, 8),

z2 ∼ U(0, 10),

z3|u1 ∼ (u1 + n3),

n3 ∼ N (10000, 3000),

x|z3, u1 ∼ Bernoulli
(
σ(wT z3 + u1)

)
,

w ∼ N (0, 1e−5),

f1(z) = 0.008 · z1 − 0.1 · z2,

f2(z) = 0.005 · z1 − 0.3 · z2,

y|x, z1, z2 ∼ Bernoulli
(
σ
(
x · f1(z) + (1− x) · f2(z)

))
,

(1.5)

where σ is the sigmoid function. We sample ten thousand records follow-
ing this generating process. Then we hideU1 from the synthetic data so that the
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Table 1.1: Top 5 subgroups in example 1. Higher ϕŶ |X(D) means more exceptional.

D ϕŶ |X(D) |D|
N

Z2 ≤ 4 ∧ Z3 > 6305 0.7114 .383
Z2 ≤ 4 ∧ Z1 > 8 0.7097 .426
Z2 ≤ 4 ∧ Z3 < 14467 0.7086 .400
Z2 ≤ 4 ∧ Z1 ≤ 57 0.7072 .428
Z2 ≤ 2 ∧ Z3 ≤ 20242 0.7067 .315

algorithms can only observe P (Z1, Z2, Z3, X, Y ). We propose to investigate
the quantity of interest P (y = 1|x = 1) within and without subgroups, e.g.
we can fit a Logistic regression model: P (Ŷ |X; θ) = Bernoulli

(
σ(θ>X)

)
with observed data. After that, for each description, we can select the associ-
ated subsets and fit the model again. The quality is measured by comparing
θ within and without subgroups. The larger the returned value is, the more
exceptional that subgroup is. Then we apply beam search for the search pro-
cess. The results are shown in Table 1.1. We can see that variable Z3 is highly
related to the exceptional performance in subgroups. However, Equation 1.5
indicates that Z3 is independent of the quantity P (Ŷ |X). This contradiction
shows that the quality measure or search algorithm might be misled by the
spurious associations between Z3 and the quantity of interest. We will show
in the remaining sections how to properly tackle this problem systematically.
First, we need to encode the data generating process with a graph language.

Note that under the settings of this example, the exceptionality of sub-
groups regarding to {z1, z2, z3} and {z1, z2} are observational equivalent. This
means that only applying a model class and quality measure that are oblivious
to the true generating process would lead to possible false discoveries. We will
discuss how to overcome this problem by capturing the uncertainty properly in
the following chapters.

1.3 Contributions

This dissertation studies the problem of uncertainty in EMM and explores var-
ious solutions in different application scenarios. The main questions that are
answered include:

• How to capture the uncertainty in the multi-modal dependencies be-
tween target variables? How to measure the exceptionality of subgroups
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in a multi-modal behavior?
• How to capture the uncertainty in the dependency between target vari-

ables and derive a proper measure to find the significantly exceptional
subgroups? How to apply the solution of this question to downstream
tasks, e.g. discovering exceptional educational behavior and validating
the fairness of machine learning models?

• How to capture the uncertainty in the causal dependencies between treat-
ments and outcome under the circumstance of selection/confounding
bias?

• How to capture the uncertainty in the Local Causal Dependencies be-
tween a subgroup and the quantity of interest associated with that sub-
group? How can Local Causal Dependencies help us to capture the ex-
ceptional subgroups?

To tackle these questions, we define new problems and develop methods,
algorithms for solutions, which lead to the following contributions:

Chapter 2: uncertainty in multi-modal dependency modeling In this
chapter, we introduce the problem of discovering exceptional subgroups con-
sidering the multi-modal dependencies between target variables. In order to
capture such multi-modal dependencies, we propose to explicitly simulate the
underlying data generating process by building Bayesian non-parametric mod-
els. Based on the learned Bayesian non-parametric models, we propose to
quantify the exceptionality by comparing the posterior distributions of model
parameters in subgroups and the whole data. Finally, the methods and results
are applied to spatio-temporal behavior analysis which allows us to detect ex-
ceptional subgroups considering their spatial, time and text activity on social
media like twitter (Du et al., 2020b).

Chapter 3: uncertainty in dependency modeling In this chapter, we con-
sider to capture the exceptionality in subgroups with heterogeneous and high-
dimensional interactions between target variables. We introduce the depen-
dency modeling methods by point estimate, and propose defining quality mea-
sures based on learning with specific model classes. Then we propose hypoth-
esis testing to capture the uncertainty between attributes and targets to validate
the significance of the measured qualities. Finally, the methods and results are
applied to practical applications to study how EMM can help people to under-
stand the educational behavior (Du et al., 2018) and the fairness in network
representation models (Du et al., 2020c).
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Chapter 4: uncertainty in causal dependency In this chapter, we study a
specific dependency between variables: causal dependency. Instead of com-
puting correlation dependency by conditional probability, the calculation of
causal dependency requires to model the intervention process on variables.
The intervention process can be represented by the do-operator (Pearl, 2009).
Due to the confounding / selection bias, it is difficult to compute the causal
dependency from observational data. We study this problem from the view of
counterfactual prediction with the Potential Outcome framework (PO) (Rubin,
2005). A neural network framework employing adversarial balanced repre-
sentation learning is proposed to estimate the causal dependency (Du et al.,
2019).

Chapter 5: uncertainty in Local Causal Dependency In this chapter, we
study a the problem of EMM by considering the causal dependency between
attributes and the quantity of interest. A computational graph, D-graph, is
proposed to capture this specific dependency by using the structural causal
model (Du et al., 2020a). We show how this new defined problem can prevent
us from being misled by false discoveries comparing with tradition EMM. This
method can help us to understand why a given model performs differently in
subgroups defined in terms of attributes.



2
Uncertainty in Multi-modal Dependency

Modeling

“I wanted certainty in the kind of way in which people want religious faith.
I was continually reminded of the fable about the elephant and the tortoise.
Having constructed an elephant upon which the mathematical world could
rest, I found the elephant tottering, and proceeded to construct a tortoise to
keep the elephant from falling.”

Portraits from Memory and Other Essays,
Bertrand Russell, 1956.

2.1 Introduction

In this chapter, we propose to discuss the uncertainty in EMM under the con-
dition of multi-modal dependency. For instance, collective social media pro-
vides a vast amount of geo-tagged social posts, which contain various records
on spatio-temporal behavior. Modeling spatio-temporal behavior on collective
social media is an important task for applications like tourism recommenda-
tion, location prediction and urban planning. Properly accomplishing this task
requires a model that allows for diverse behavioral patterns on each of the
three aspects: spatial location, time, and text. Traditional methods in SD /
EMM consider the distribution of a single target, or single model class for the
evaluation of exceptional behavior in subgroups. However, when the targets of
interest consist of multi-variables with multi-modal behavior, existing quality
measures and model classes may not be able to capture the real exceptionality.
We propose to build a systematic method to solve this problem with a spe-
cific case: how to find representative subgroups of social posts, for which the
spatio-temporal behavioral patterns are substantially different from the behav-

13
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ioral patterns in the whole dataset?

The challenges for solving this problem are two-folds: on the one hand,
we need to develop a new model class that can capture the multi-modal be-
havior from observational data; on the other hand, a new quality measure is
required to capture the exceptionality of multi-modal behavior with limited
data records. With limited data records, the training process of a model may
not return the optimum hypothesis, which could bring more uncertainty for the
evaluation of exceptionality. Point estimate methods for single modal model
class could not provide enough confidence for the exceptionality. We propose
to quantify the exceptionality of a subgroup with regard to the data generating
process.

2.2 Motivation

Popular social media platforms such as Twitter and Instagram have millions of
users who share their photos, stories and geo-locations. This allows the collec-
tive social media to reflect diverse human behavioral patterns. The behavioral
patterns in social posts are represented by joint distributions of spatial loca-
tions, time, and word topics (Hong et al., 2012). Specific deviations across any
combination of these three distributions can indicate interesting, exceptional
behavior of the population; one can for instance see such deviations surround-
ing large events, such as sports games and concerts (Zheng et al., 2018). In
this chapter, instead of social posts for individuals, we are interested in finding
social posts for subgroups restricted by descriptions, for which the behavioral
patterns are substantially different compared to the behavioral patterns in the
whole dataset. Discovering and understanding these behavioral patterns on
collective social media is a task of predominant importance, since properly
accomplishing this task can benefit applications such as tourism recommenda-
tion, location prediction, and urban planning (Kim et al., 2016).

To contribute to this behavioral understanding, instead of finding outly-
ing social posts far from the main activity areas, we are looking for excep-
tional subgroups: coherent subsets for which we can formulate concise de-
scriptions in terms of conditions on attributes of the data (Herrera et al., 2011,
Atzmueller, 2015), e.g., ‘Age < 25 ∧ gender = Female’. The most challeng-
ing problems for finding exceptional subgroups are: how to model the spatio-
temporal behavior and quantify the exceptionality of the subgroups? Before
proposing the solution, we discuss the challenges which need to be overcome
at first:
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Spatio-temporal modeling. Difficulties stem from two aspects. On the one
hand, unlike modeling behavior of individuals, where the records are grouped
by certain subjects (Yuan et al., 2017), in our problem setting, the candi-
date subgroups are apriori unknown. We cannot model the spatio-temporal
behavior of all the subgroups either, because of the pattern explosion prob-
lem (Meeng et al., 2014). This means that we cannot directly model the global
distribution of behavioral patterns over the whole dataset. On the other hand,
collective social activities typically contain uncertain spatial, temporal, and
text information on diverse scales (Jankowiak and Gomez-Rodriguez, 2017).
To properly overcome these challenges, we need a model that can handle the
diverse, uncertain, large scale, and high-dimensional information in collective
social posts and induce the global distribution of behavioral patterns in the
whole dataset.

Exceptionality evaluation. Our aim is to identify exceptional behavioral
patterns of social posts in subgroups. The general method would be to learn
the joint distributions of spatial locations, time, and texts empirically by prob-
ability mass (Giannotti et al., 2016), followed by comparing the distributions
in subgroups with the global distributions in the whole dataset. However, this
method is not applicable for the research problem of this chapter. The reasons
are two-fold. On the one hand, given limited records, we cannot be confi-
dent whether a subgroup is exceptional or not in long term behavior only by
comparing the empirical distributions. On the other hand, because of the un-
certainty and diversity of social posts in collective social media, it is difficult
to simply assume a distribution for the behavioral patterns and build a null
hypothesis to test (Hooi et al., 2016).

2.3 Contributions

To overcome these challenges, we propose BNPM: a Bayesian non-parametric
model for spatio-temporal behavior modeling on the subgroup level. In
BNPM, we randomly sample arbitrarily large numbers of subgroups as the
training samples in order to estimate the global behavior. We employ a Chi-
nese Restaurant Process (CRP) to gather those randomly sampled subgroups
into several components. In this process, the behavioral pattern of each sub-
group is assumed to follow a prior distribution. Subgroups in one CRP com-
ponent are allowed to have variations in distribution, but similar kinds of be-
havior ought to aggregate within every single component. Hence, the CRP
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Figure 2.1: Comparison between Bayesian posterior distribution and point estimate.
Contours represent the distribution of µ (mean of spatial locations) following a multi-
variate Gaussian distribution; solid points represent point estimates of µ.

model allows for modeling multiple types of normal behavior to occur simul-
taneously, which more accurately represents real life than if we assume one
monolithic kind of normal behavior. We estimate the global distribution of
behavioral patterns in the whole dataset by the mixture of behavioral patterns
with mixture coefficients of the components (cf. Equation (2.19)). Specifi-
cally, for each given subgroup, we can calculate its posterior distribution with
the learned BNPM, according to the information of spatial locations, time, and
texts. The exceptionality score of the given subgroup is derived by comput-
ing the distance between the posterior distribution and the global distribution.
We employ a variant of weighted KL-divergence (van Leeuwen and Knobbe,
2012) for multi-variate distribution (Soch and Allefeld, 2016), to calculate the
distance between the posterior distribution of the subgroup and the global dis-
tribution. Finally, we aggregate the exceptionality scores in the aspects of spa-
tial locations, time, and texts as the final exceptionality score of the candidate
subgroup.

In Figure 2.1, we present an artificial example to show the advantage of
our method. From the perspective of a point estimate, both the red and the yel-
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Figure 2.2: Methodological pipeline involving BNPM.

low subgroups are exceptional compared with the global population (in blue).
However, from the perspective of Bayesian posterior distribution, the yellow
one is much more suspicious than the red one. The reason is that the point es-
timate uses limited data to estimate the behavioral pattern, which might lead to
biased results. The Bayesian non-parametric method evaluates the exception-
ality of behavioral patterns by comparing the posterior distribution with the
global distribution, which can help us effectively find exceptional behavioral
patterns and prevent false discoveries.

The training process of our model includes two iteration steps: assign-
ing subgroups into components and updating hyper-parameters for the compo-
nents. These two processes influence each other iteratively. We integrate these
two steps with the collapsed Gibbs sampling (Porteous et al., 2008) algorithm.
Having learned the well-trained model over the whole dataset, we can calcu-
late the posterior distribution for any subgroup across the location distribution,
time distribution, and text distribution. This allows us to employ EMM to auto-
matically discover subgroups with exceptional spatio-temporal behavior. The
whole process of our method is shown in Figure 2.2. To demonstrate the effec-
tiveness and scalability of our method, we validate our model by conducting
experiments on four real-world datasets from New York, London, Tokyo, and
Shenzhen. The resulting subgroups illustrate the versatility of the method. In
London, our method discovers the spatially coherent subgroup of people at-
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tending a specific football match. In Tokyo, it discovers a subgroup of people
frequenting three locations in a specific ward: two touristic attractions and a
station where trains leave for a third touristic attraction (identified by analyzing
the texts of the tweets) which is located relatively far away. The combination
of spatio-temporal behavior and tweet text behavior can benefit the uncover-
ing of such a subgroup, which is where the added value of our method lies.
Finally, in another ward of Tokyo, two subgroups separate the professionals
and the tourists by their combined spatio-temporal and tweet text behavior. In
summary:

• We introduce BNPM: a Bayesian Non-Parametric Model for spatio-
temporal behavior modeling on the subgroup level. BNPM can handle
diverse, uncertain, large scale and multi-modal information in collective
spatio-temporal data.

• We define a new evaluation method for EMM. The global distribution
is generated by the mixture of behavioral patterns in BNPM. By com-
paring the posterior distribution of a candidate subgroup with the global
distribution, we can quantify the exceptionality of subgroups.

• We conduct various experiments on four real-world datasets. The results
show that our method is effective and efficient for finding exceptional
social posts on the subgroup level.

2.4 Related Work

Exceptional spatio-temporal behavior mining on the subgroup level is related
to three fields: anomaly detection (Chandola et al., 2009), EMM (Duivesteijn
et al., 2016) in the aspect of exceptionality metric; and spatio-temporal mod-
eling (Atluri et al., 2017) in the aspect of behavior modeling.

Anomaly Detection Anomaly detection is highly explored in online rat-
ings (Hooi et al., 2016), reviews (Xie et al., 2012), and social network anal-
ysis (Shin et al., 2017). In order to detect collective anomalies on spatio-
temporal datasets with different distributions, densities and scales, researchers
have proposed a multi-source topic model for spatio-temporal modeling (Wu
et al., 2017, Zheng et al., 2015). Methods such as classification, statistical, and
regression models are used for modeling user behavior to discover anomaly
patterns (Shipmon et al., 2017).

Unlike anomaly detection, there is no labeled data for identifying anoma-
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lies in EMM. This means that standard supervised learning cannot be used
directly for this task. The exceptional subgroups are identified by comparing
the performance of the model in subgroups with the performance of the model
in the whole dataset, for which the subgroups are restricted by the descriptive
variables (Duivesteijn et al., 2016). The whole process of EMM lies in the
field of knowledge discovery. This formulates the main difference between the
research of anomaly detection and EMM.

Exceptional Model Mining Though existing model classes can handle all
kinds of targets, most cannot model spatio-temporal behavior, which contains
geo-spatial coordinates and timestamps. Lemmerich et al. (2016) introduce
first-order Markov chains as a model class for sequence data, which can be
used for mining exceptional transition behavior. Bendimerad et al. (2016) em-
ploy weighted relative accuracy to evaluate characteristics in subgraphs of ur-
ban regions. However, they do not consider the text information, especially
the word topics. This information integration is the added value of our model.
In order to properly handle the noise inherent to spatial and temporal data and
prevent false positives, we introduce a quality measure under the Bayesian
framework.

Spatio-Temporal Modeling There is a vast amount of literature about
spatio-temporal data mining (Atluri et al., 2017, Lane et al., 2014, Wang et al.,
2011, Yuan et al., 2017). Most work focuses on modeling mobility patterns
of individuals or groups aiming at location prediction or period discovery.
The basic assumption is that individuals or groups might have a regular activ-
ity area, which indicates the inner similarity of social and geographic close-
ness (Cranshaw et al., 2010). Piatkowski et al. (2013) present a graphical
model designed for efficient probabilistic modeling of spatio-temporal data,
which can keep the accuracy as well as efficiency. Knauf et al. (2016) propose
a spatio-temporal kernel for multi-object scenarios. A branch of research fo-
cuses on visual analytics for spatio-temporal modeling (Zheng et al., 2016). In-
teractive and human-guided methods are employed to discover the behavioral
patterns and understand the heterogeneous information in the urban data (Puo-
lamäki et al., 2016, Chen et al., 2018c). The differences between our work and
the work before are two-fold. On the one hand, the collective social posts on
the subgroup level in our research is constrained by the descriptions, which
distinguishes our work from others such as twitter stream clustering or user
clustering (Chierichetti et al., 2014). On the other hand, the exceptional sub-
groups and the components of behavioral distributions are unobserved from the
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datasets, which means that we have to establish a model for the modeling of
global distribution of behavioral pattern as well as discovering the exceptional
subgroups comparing with this global distribution.

2.5 Methodology

2.5.1 Preliminaries

Assume a dataset Ω: a bag of m records r ∈ Ω of the form:

r = (a1, . . . as, b1, . . . bu),

where s and u are positive integers. We call a1, . . . , as the descriptive at-
tributes or descriptors of r, and b1, . . . , bu the target attributes or targets of
r. The descriptive attributes are taken from an unrestricted domain A. Mathe-
matically, we define descriptions as functions D : A → {0, 1}. A description
D covers a record rj if and only if D(aj1, · · · , a

j
s) = 1.

A Chinese Restaurant Process (CRP) (Blei et al., 2010) is a distribution on
partitions of integers obtained by imagining a process by which n−1 customers
sit down in a Chinese restaurant with an infinite number of tables with infinite
capacity. Whenever a new customer arrives, customer n, she can either choose
an existing table k with nk seated customers or sit at an empty table, following
distribution:

p(existing table k | previous customers) =
nk

n− 1 + α
,

p(new table | previous customers) =
α

n− 1 + α
.

In each step a new table is created with non-zero probability, which allows this
process to adapt to increasing complexity of the data.

2.5.2 Subgroup-Level Spatio-Temporal Modeling (BNPM)

We consider the spatio-temporal patterns of geo-tagged social posts on the
level of subgroups restricted by descriptive attributes. For notational purposes,
we ignore that these subgroups need to be generated somehow; instead, we
assume that some process has delivered us a list of subgroups, indexed i =
1, . . . , n, where subgroup i has di posts, indexed by j = 1, . . . , di. The posts
in subgroup i are denoted by the variables rij ∈ {1, 2, . . . ,m}; posts may
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Table 2.1: Notations used in the chapter.

Notation Description

n Number of subgroups
m Number of geo-tagged social media posts
di Number of posts belongs to subgroup i
D Description of a subgroup
rij Social media post j in subgroup i

lij = (x, y) Spatial location of post j in subgroup i
tij = t Time of post j in subgroup i

wij = {w1, . . . , wq} Texts of post j in subgroup i
nk Number of subgroups in component k
zi Component assignment of subgroup i
K Number of components
V Vocabulary of the whole words

α Concentration parameter of CRP
βk Probability to choose component k

µi,Σi Mean and covariance of spatial locations in subgroup i
υi, σi Mean and variance of time in subgroup i
θi Word distribution for posts in subgroup i

µ0zi , λzi ,Wzi , νzi Normal-Inverse-Wishart (NIW) prior for µi,Σi

υ0zi , κzi , ρzi , ψzi Normal-Gamma (NG) prior for υi, σ2
i

θ0zi Dirichlet prior for θi

belong to multiple subgroups. Each post is a 3-tuple rij = (lij ,tij ,wij), where
lij = (x,y), tij = t and wij = {w1, . . . , wq} represent the spatial location, time,
and a bag of words in a geo-tagged post. Table 2.1 lists the notations used in
the rest of this chapter. We now propose the problem of discovering subgroups
with exceptional spatio-temporal behavior as follows:

Problem 2.5.1 (Discovering subgroups with exceptional spatio-temporal behavior)
Given a dataset of geo-tagged social posts Ω, descriptive attributes
taken from A, descriptions D : A → {0, 1}, and a quality mea-
sure ϕ, our aim is to find a bag of subgroups {SD1 , · · · , SDq}, where
∀D′ ∈ D \ {D1, · · · , Dq}, ∀D ∈ {D1, · · · , Dq}, ϕ(D′) ≤ ϕ(D).

The main challenge for this problem is the subgroup selection process with
regard to the exceptionality compared with the global population. To accom-
plish this task, we need a spatio-temporal model on the subgroup level, to
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model the behavioral patterns in the global population and subgroups.

The Bayesian Non-Parametric Model Several intuitions underpin our
model:

1. The behavioral patterns of subgroups over the whole dataset can be cap-
tured by several components. Each component follows a single triplet
of prior distributions: of spatial locations, time, and word topics. We
assume that the social posts are generated by the mixtures of compo-
nents with mixture coefficients, but the number of components and the
mixture coefficients are unobserved from the dataset.

2. Despite following the same prior distribution, subgroups within the
same component need not have the same distributions of spatial loca-
tions, posting time, and texts.

3. Social posts are distributed in spatial regions, with time ranges as well as
word topics. These distributions indicate the spatio-temporal behavioral
patterns of subgroups. The spatio-temporal behavioral pattern varies
according to the center and scale of the region and time, as well as the
word topics.

Based on these intuitions, we assume that subgroups and social posts are gov-
erned by a generative model. This model for spatio-temporal behavior on the
subgroup level is a mixture model in which each subgroup belongs to one of
the components, in order to capture different types of behavior. Each compo-
nent represents a behavioral pattern with specific prior distributions of location,
time, and word topics. The spatial location associated to each geo-tagged post
is drawn from a multivariate Gaussian distribution, as suggested by Gonzalez
et al. (2008):

l = (x, y) ∼ N (l|µ,Σ).

For each component, we assume that a Normal-Inverse-Wishart (NIW) dis-
tribution is the prior distribution that governs the generation of means and
covariance matrices (µ,Σ) for spatial locations, as suggested by Yuan et al.
(2017):

(µ,Σ) ∼ NIW(µ,Σ|µ0, λ,W, ν).

Similarly, we can write down the generative process of time t from a univariate
Gaussian distribution, as suggested by Cho et al. (2011), as:

t ∼ N (t|υ, σ2), (2.1)
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Figure 2.3: Graphical model representing subgroups with locations, time and texts of
posts. Shaded rectangles are hyper-parameters, blank circles are latent variables and
shaded circles are observations.

where the mean υ and variance σ are drawn from a Normal-Gamma prior
distribution, as suggested by Yuan et al. (2017):

(υ, σ) ∼ NG(υ, σ|υ0, κ, ρ, ψ). (2.2)

Each word w in {w1, . . . , wq} is drawn from a multinomial distribution, as
suggested by Jankowiak and Gomez-Rodriguez (2017):

w ∼Mult(θ), (2.3)

where θ is a distribution that represents proportions of words in vocabulary V ,
which depends on the Dirichlet prior θ0 (Jankowiak and Gomez-Rodriguez,
2017):

θ ∼ Dirichlet(θ0). (2.4)

By construction, the proposed generative model gathers the subgroups into
several components, which raises the question of choosing the number of com-
ponents. If we set the number too high, spatio-temporal behavioral patterns of
subgroups may vary too much, which will impede proper evaluation of be-
havior exceptionality. Conversely, if we set the number too low, exceptional
subgroups may be mixed with normal subgroups, which will lead to false pos-
itive errors. This is where we employ the Chinese Restaurant Process (cf.
Section 2.5.1). The full generative process (cf. Figure 2.3) can be summarized
as follows:

1. Set the number of components K← 0
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2. For i = 1, . . . , n:
(a) Assign subgroup i to an existing component k ∈ {1, . . . ,K} with

probability βk = nk
i−1+α , or to a new component k = K + 1 with

probability α
i−1+α .

(b) Draw (µi,Σi)|zi = k ∼ NIW(µ0k, λk,Wk, νk).
(c) Draw (υi, σi)|zi = k ∼ NG(υ0k, κk, ρk, ψk).
(d) Draw θi|zi = k ∼ Dirichlet(θ0k).
(e) For j = 1,. . . ,di:

i. Draw lij ∼ N (l|µi,Σi).
ii. Draw tij ∼ N (t|υi, σ2

i ).
iii. Draw each wijq ∈ {w1, . . . , wq} ∼Mult(w|θi).

(f) Update hyper-parameters in component k.

Inference Method As illustrated above, to conduct the whole generating
process, we need to estimate the latent variables, which cannot be observed
directly from the datasets. We propose to employ collapsed Gibbs sampling to
infer the latent variables in the proposed generative model efficiently (Porteous
et al., 2008). Given full observation of n subgroups, the total likelihood is:

P (l,t,w, z|α, µ0, λ,W, ν, v0, κ, ρ, ψ, θ0)

=

∫
β
P (z|β)P (β|α)dβ ·

∫
µ

∫
Σ
P (l|µ,Σ)P (µ,Σ|µ0, λ,W, ν)dµdΣ

·
∫

v

∫
σ
P (t|υ, σ)P (υ, σ|v0, κ, ρ, ψ)dµdσ ·

∫
θ
P (w|θ)P (θ|θ0)dθ.

(2.5)

We exploit the conjugacy between the multinomial and Dirichlet distributions,
the Gaussian and Normal-Inverse-Wishart distributions, and the Gaussian and
Normal-Gamma distributions. Hence, we can analytically integrate out the
parameters β, µ,Σ, υ, σ, and θ, and only sample the component assignments
z, which is done as follows:

P (zi = k|z¬i, li, ti,wi, α, µ0k, λk,Wk, νk, υ0k, κk, ρk, ψk, θ0k) ∝
P (zi = k|z¬i, α) · P (li|l¬i, µ0k, λk,Wk, νk)

·P (ti|t¬i, υ0k, κk, ρk, ψk) · P (wi|w¬i, θ0k).

(2.6)
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The first term of Formula (2.6) is governed by the CRP:

P (zi = k|z¬i, α) =

{ nk¬i
n−1+α if k exists,

α
n−1+α if k is new.

(2.7)

The second term is the posterior predictive distribution of li in component k,
excluding subgroup i. We assume that each post in subgroup i is generated
equivalently, hence the second term equals:

di∏
j=1

p(lij |lk¬i, µ0k, λk,Wk, νk)

=

di∏
j=1

τνnk−1

(
lij

∣∣∣∣µnk¬i,
λnk

+ 1

λnk
(νnk

− 1)
Wnk¬i

)
.

(2.8)

Here, lk¬i, nk¬i are locations, and the number thereof in component k after
excluding subgroup i,

µnk¬i =
λkµ0k + nk¬i l̄k¬i

λnk

, λnk
= λk + nk¬i,

Wnk¬i = Wk +
∑
l∈lk¬i

(l − l̄k¬i)(l − l̄k¬i)T

+
λknk¬i
λk + nk¬i

(l̄k¬i − µ0k)(l̄k¬i − µ0k)
T , νnk = νk + nk¬i.

(2.9)

The posterior predictive distribution of each lij follows a bivariate Student’s
t-distribution (Murphy, 2007). Similarly, we can write down the posterior pre-
dictive distribution of ti in the third term of Formula (2.6):

di∏
j=1

τ2ρnk

(
tij

∣∣∣∣υnk¬i,
ψnk¬i(κnk

+ 1)

ρnk
κnk

)
, where (2.10)

υnk¬i =
κkµ0k + nk¬it̄k¬i

κnk

, κnk
= κk + nk¬i, ρnk = ρk + nk¬i/2

ψnk¬i = ψk +
1

2

∑
t∈tk¬i

(t− t̄k¬i)2 +
κknk¬i(t̄k¬i − υ0k)

2

2κnk

.

(2.11)

The posterior predictive distribution of each tij follows a univariate Student’s
t-distribution. For the fourth term of Formula (2.6), each posterior predictive
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distribution of wij for post j in subgroup i follows a Dirichlet-multinomial
distribution (Tu, 2014):

P (wij|θ0k) =
Γ(ck¬i + V θ0k)

∏
w∈V Γ(cwk¬i + cwj + θ0k)

Γ(ck¬i + cj + V θ0k)
∏
w∈V Γ(cwk¬i + θ0k)

. (2.12)

Here, ck¬i is total number of words in component k so far excluding subgroup
i, cwk¬i is how often word w occurs in component k so far excluding subgroup
i, cj is the total number of words in post ij, and cwj is how often word w
occurs in post ij.

Our model assumes that each component has its own specific hyper-
parameters. If we fix all the assignments of z, we use random search
for hyper-parameter optimization (Bergstra and Bengio, 2012) to choose
µ0k, λk,Wk, νk, υ0k, κk, ρk, ψk, and θ0k. Our goal is maximizing the marginal
likelihood of the data in each component (Bergstra et al., 2011):

argmax
(µ0k,λk,Wk,νk)

P (lk|µ0k, λk,Wk, νk), (2.13)

argmax
(υ0k,κk,ρk,ψk)

P (tk|υ0k, κk, ρk, ψk), (2.14)

argmax
θ0k

P (wk|θ0k). (2.15)

Now, we can build up the two iteration processes in our inference algorithm.
The one is iteratively optimizing hyper-parameters for fitting subgroups in
associated components. The other is iteratively sampling component assign-
ments to assign subgroups. These two steps influence each other: better hyper-
parameter selection provides more accurate posterior predictive distribution to
assign subgroups; better assignments for subgroups can provide more accurate
likelihood estimation for hyper-parameter selection. We iteratively run these
two steps until a maximum number of iterations is reached. See Algorithm 1
for details.

Subgroup Evaluation Method Having learned the proposed model, we
need to evaluate the exceptionality of a subgroup. Behavioral patterns are
gauged in terms of the location distribution, time distribution, and text distri-
bution. As an example, we use time distribution to explain our method for
exceptionality evaluation. Let ti denote a vector representing the post time of
collective social posts in subgroup i. Generally, people will assume a distri-
bution for P (t), e.g., N (υ, σ), and use the point estimate of υ and σ as the
estimated parameters of that distribution. The learned distribution is regarded
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Algorithm 1 Inference algorithm for BNPM.

1: Initialize z, µ0k, λk,Wk, νk, υ0k, κk, ρk, ψk, θ0k;
2: Initialize α;
3: while not reach the maximum iterations do
4: for k = 1 to K do
5: Update µ0k, λk,Wk, νk using Formula (2.13);
6: Update υ0k, κk, ρk, ψk using Formula (2.14);
7: Update θ0k using Formula (2.15);
8: end for
9: for i = 1 to n do

10: Exclude i from component zi;
11: for k = 1 to K do
12: Compute P (zi = k|z¬i, α) using Equation (2.7);
13: Compute P (li|lk¬i, µ0k, λk,Wk, νk) using Equation (2.8);
14: Compute P (ti|tk¬i, υ0k, κk, ρk, ψk) using Formula (2.10);
15: Compute P (wi|wk¬i, θ0k) using Equation (2.12);
16: Compute P (zi = k|z¬i, .) using the preceding results;
17: end for
18: Compute P (zi = k∗|z¬i, α) using Equation (2.7);
19: Compute P (li|µ0k∗ , λk∗ ,Wk∗ , νk∗) using Equation (2.8);
20: Compute P (ti|υ0k∗ , κk∗ , ρk∗ , ψk∗) using Formula (2.10);
21: Compute P (wi|θ0k∗) using Equation (2.12);
22: Compute P (zi = k∗|z¬i, .) using the preceding results
23: Sample knew from P (zi|z¬i, .);
24: Update component zi = knew;
25: if knew > K then
26: K = K + 1;
27: end if
28: if any component k is empty then
29: K = K − 1;
30: end if
31: end for
32: end while
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as an estimation about the temporal behavioral pattern of subgroup i. However,
this distribution is not sufficient to represent the real behavioral pattern of sub-
group i, because we cannot be confident about the behavior of that subgroup
with limited records. Hence, in this chapter, instead of a point estimate for
a distribution with limited data, we compute the posterior distribution as our
belief about the behavioral pattern of a subgroup. For each given candidate
subgroup i, we firstly estimate the component assignment zi on this subgroup
by using Formulas (2.6), (2.7), (2.8), (2.10), and (2.12). Then, with BNPM, we
calculate the posterior distribution of subgroup i’s location distribution, time
distribution, and text distribution:

P (µ,Σ|li) = NIW(µ,Σ|µ0zi , λzi ,Wzi , νzi), (2.16)

P (υ, σ|ti) = NG(υ, σ|υ0zi , κzi , ρzi , ψzi), (2.17)

P (θ|wi) = Dirichlet(θ|θ0zi). (2.18)

Here we calculate the posterior parameters the same way as Equations (2.9),
(2.11), and (2.12), with the prior hyper-parameters in component zi. Having
obtained the posterior distribution, the next step is to evaluate the exception-
ality. In the training process, we learn the mixture proportion of components
denoted as β. The global distribution of time is governed by both components
and the mixture proportion of components. We can calculate the distribution
of time in the global population by Equation (2.2) as:

P (υ, σ) =

K∑
k=1

βk · NG(υ, σ|υ0k, κk, ρk, ψk). (2.19)

This distribution describes the temporal behavioral pattern averaged by the
global population. Now we can compare the posterior distribution of time
conditioned on a subgroup, with the global distribution of time. The more
different they are, the more exceptional the subgroup is. The difference in-
dicates how difficult it is to generate the time distribution in that subgroup
under the global population. In order to quantify this difference, we employ
KL-divergence as the distance measure between two distributions. For sim-
plicity, we represent Equation (2.17) with f(υ, σ) and Equation (2.19) with
g(υ, σ) =

∑K
k=1 βk · gk(υ, σ). The exceptionality score of a given subgroup i
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in the time aspect is:

ϕti =
di
m
DKL(f ||g) =

di
m

∫
f(υ, σ) log

f(υ, σ)

g(υ, σ)
d(υ, σ)

=
di
m

∫
f(υ, σ) log

f(υ, σ)∑K
k=1 βk · gk(υ, σ)

d(υ, σ),

(2.20)

where di
m represents the generality of subgroup i, which is a trade-off with ex-

ceptionality. Note that g(υ, σ) is a mixture of several distributions, with which
it is difficult to compute the KL-divergence efficiently. In order to overcome
this problem, we propose to compute the Goldberger approximation (Gold-
berger et al., 2003):

DGoldberger(f ||g) =

K∑
k=1

(DKL(f ||gk)− log βk). (2.21)

According to the properties of conjugate prior, the posterior distribution has
the same form as the prior distribution. Thanks to properties of the NG func-
tion (Soch and Allefeld, 2016), we can compute the KL-divergence of twoNG
distributions as follows:

DKLNG (f ||gk) =
1

2
κ2
gk

ρ2
f

ψ2
f

(υ0gk − υ0f )2
+

1

2

κ2
gk

κ2
f

− log
κgk
κf
− 1

2

+ ρgk log
ψf
ψgk
− log

Γ(ρf )

Γ(ρgk)
+ (ρf − ρgk)h(ρf )− (ψf − ψgk)

ρf
ψf
,

(2.22)

where h(x) is the digamma function. Combining this outcome with Equations
(2.20) and (2.21), we compute the difference between the posterior distribution
of time conditioned on one subgroup and the distribution of time in the whole
dataset, denoted as ϕti . Similarly, we calculate ϕli and ϕwi . Then we ag-
gregate these three exceptionality indicators after normalizing to get the final
exceptionality score:

ϕi = e
ϕ∗li

+ϕ∗ti
+ϕ∗wi

−3
. (2.23)

2.6 Experiments

We evaluate the performance of our method on four real-world datasets from
four cities on three continents: Twitter datasets from London, Tokyo, and New
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Table 2.2: Datasets used in this chapter.

Dataset # Tweets # Users Timeframe # Attributes
London 169033 48232 April 2016 10
New York 210820 87510 April 2016 10
Tokyo 201643 49214 April 2016 10
Shenzhen 303161 100000 October 2016 8

York, and a Weibo dataset from Shenzhen. The details of datasets are shown in
Table 2.2. The attributes of tweets contain: country, current living place, num-
ber of followers, number of following, listed, language, favourites, retweets,
bio, date, source, gender, hour, latitude, longitude, and tweet text. We prepro-
cess the tweets as follows:

1. converting the date into weekdays from 1 to 7;
2. extracting occupation from bio, such as student, driver, writer, editor,

and so on;
3. removing stop words;
4. converting hours to float, from 1 to 24.

We use hour, latitude and longitude, and tweet text as the input values for
temporal, spatial, and text information, respectively. All other attributes are
used as the descriptors to generate subgroups. All the experiments are carried
out on an Intel Core i7 2.60GHz laptop, 24GB RAM, Windows 10

To train BNPM by Algorithm 1, we must generate a set of input subgroups.
To do so, we randomly sample 100,000 subgroups with replacement for which
the coverages are ranging from 10 to 50 percent of the posts in the original
dataset. For the spatial part, we calculate the mean coordinate and covariance
from the data itself as the prior mean µ0 and prior covariance W . The other
hyper-parameters are initialized as follows: λ = 1, ν = 30. For the temporal
part, we calculate the prior mean of post time v0 and initialize other hyper-
parameters as follows: α = 0.1, κ = 0.1, ρ = 0.5, ψ = 0.1. Through these
settings and parametrizations, we train the BNPM model to capture the behav-
ioral patterns in the global dataset; for instance the time distribution can now
be estimated with Equation (2.19).

Having captured the global behavior, we can now mine for subgroups ex-
hibiting exceptional behavior, by contrasting their behavior against the norm.
We employ the beam search algorithm given in (Duivesteijn et al., 2016, Algo-
rithm 1) for the subgroup search process. In the quality measure step, we calcu-
late the exceptionality score of a subgroup by the method in Section 2.5.2. We
set the beam width to 50 and the search depth to 2. This last parameter setting
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Table 2.3: Exceptional subgroups in Shenzhen. We translate the original Chinese
words into English, for your convenience. Descriptions: D1: source == ‘vivo’, D2:
Gender == ‘m’ ∧ source == ‘other’, D3: source == ‘vivo’ ∧ Gender != ‘m’, D4:
source == ‘Mi’ ∧ Gender == ‘m’, D5: Age >9 ∧ Gender == ‘m’. Higher ϕsd(D)

indicates more exceptionality. Higher |D|
|Ω| indicates more coverage of subgroup on the

whole dataset.

D ϕsd(D) |D|
|Ω| High-Frequency Words

D1 0.79 0.04 new song, come on, music, support, like, rank
D2 0.64 0.04 Thailand, selfie, holiday, Weibo, tour, photography
D3 0.62 0.03 new song, come on, music, support, like, rank
D4 0.61 0.03 team, investment, customer, finance, refine, ability
D5 0.51 0.04 stadium, sports, run, insist, seaside, struggle

Table 2.4: Exceptional subgroups in London. Descriptions: D1: weekday:6-7∧ Place
== ‘Hammersmith’, D2: Place == ‘Camberwell’, D3: Place == ‘Camden Town’, D4:
Place == ‘Hackney’, D5: Place == ‘Kensington’

D ϕsd(D) |D|
|Ω| High-Frequency Words

D1 0.95 0.03 London, Chelsea, Stamford, bridge, football, bar
D2 0.90 0.07 stockmarket, trade, stock, intern, broker, forecast
D3 0.88 0.07 street, kingcross, station, camdenlock, transport, driver
D4 0.86 0.05 hackney, gym, class, image, orange, boss
D5 0.85 0.04 history, restaurant, sweet, healthy, cover, Paddington

is relatively narrow; it ensures that we find subgroups expressed as a conjunc-
tion of at most two conditions on descriptive attributes. The reason to not mine
to a greater search depth is philosophical rather than technical: computational
complexity would allow us to mine deeper without prohibitive time cost, but
when we allow our resulting subgroups to be defined in terms of a conjunc-
tion of more conditions on attributes, it becomes more and more opaque which
of these conditions are actually relevant, and it becomes less clear what to do
with the resulting information: mining deeper leads to subgroups which are no
longer actionable.

London and Shenzhen In Table 2.3 and Table 2.4, we present the top 5 most
exceptional subgroups found in Shenzhen and London, respectively. High fre-
quency words in those subgroups are presented to show the main topics in the
text of the tweets. We can see that the discovered subgroups restricted by spe-
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Figure 2.4: Spatial locations of tweets covered by description: “weekday:6-7 ∧ Place
== Hammersmith London”, plotted onto the map of London. The green cross high-
lights Stamford Bridge stadium.

cific descriptions show specific topical behavior, which can help us to further
discover special events reflected by the group of social posts.

The top subgroup found in London encompasses the collective social posts
described by “weekday:6-7 ∧ Place == Hammersmith London”. The spatio-
temporal behavior focuses on Saturday and Sunday in the borough of Hammer-
smith & Fulham in west London, a map of which is shown in Figure 2.4 with
in red a heatmap of the spatial locations of the tweets. We visualize the texts
of the posts by generating a word cloud shown in Figure 2.5, which shows that
the main keywords of the tweets frequently contain Chelsea, Stamford, Foot-
ball, VS, etcetera. It just so happens that on April 16, 2016, a Premier League
football match between Chelsea and Manchester City was played at Stamford
Bridge, which is the football stadium indicated by the green cross in Figure 2.4.
Our model accurately captured this subgroup that has specific spatio-temporal
behavior with specific word topics. This shows that our method can discover
and identify meaningful exceptional collective behavior.

New York Figure 2.6 displays subgroups found in New York. Our method
discovers a subgroup of people who live in Manhattan but do not speak En-
glish (D:Language != ‘en’ ∧ Place == Manhattan). From the word topics in
those social posts, we can see that they are talking about the attractions and
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Figure 2.5: Word cloud generated from the texts of tweets covered by the subgroup
plotted in Figure 2.4.

entertainments in Manhattan. In addition, we discover a subgroup of people
discussing protest rallies in a suburb (D:Place == Yonkers), and a group of
French speakers (Language == ‘fr’) sending tweets about a famous French
backery, Aux Merveilleux de Fred. These findings show that characterizing
groups of the dataset by the defined descriptive variables such as ‘Language’
and ‘Place’ contains sufficient information to discover subgroups with excep-
tional behavior in terms of spatial location, time, and texts.

Tokyo The full versatility of results that one could find with BNPM is on
display in Figure 2.7, featuring the top subgroups found in Tokyo.

The top subgroup (D:Place == Chiyoda-ku) concentrates on the centrally-
located special ward of Chiyoda. The heatmap shows that the people in this
specific subgroup are mainly concentrated in three locations. The bottom-left
location is the top attraction in Chiyoda ward: the imperial palace. The top-
right location is Akihabara, nicknamed Akihabara Electric Town, which is a
shopping district for video games, anime, manga, and computer goods; its
function as a cultural center for all things electronic makes Akihabara a major
touristic attraction in its own right. The bottom-right location is Tokyo sta-
tion, which is far from a touristic attraction. Its relevance becomes clear when
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(a)

(b)

Figure 2.6: Most exceptional subgroups in New York; descriptions, maps, and high-
frequency words.

looking at the tweet texts, which include references to DisneySea. This is yet
another major touristic attraction of Tokyo, but it is located 15 kilometers away
from Chiyoda ward. However, the easiest way for tourists to reach this desti-
nation is by taking a train on the Keiyo line, whose trains depart from Tokyo
station. Hence, tourists who visit the imperial palace and Akihabara also ex-
press interest through tweets in visiting DisneySea, which is to be reached by a
train departing from the ward in which the other two attractions lie. This find-
ing shows that the combination of spatio-temporal behavior and word topics
can benefit the discovery of such exceptional subgroups.

The second subgroup found in Tokyo (D:Language != ‘es’ ∧ Place ==
Shinjuku-ku) contrasts with subgroups discussed so far: these clearly are not
tourists. Shinjuku is the major commercial and administrative center. Filtering
out the people who tweet in Spanish (we will discuss this group later, in the
fourth subgroup), we are left with a group of people discussing topics like job
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(a)

(b)

Figure 2.7: Most exceptional subgroups in Tokyo; descriptions, maps, and high-
frequency words.

hiring and career. Spatial locations of these people are strongly concentrated
around Shinjuku train station (where big department stores, electronic stores,
banks, and city hall are located), which makes sense for professionals.

The third subgroup (D:Place == Shibuya-ku) focuses on Shibuya ward,
which is a major destination for fashion and nightlife. Arguably its most fa-
mous attraction is the Shibuya scramble crossing, a crosswalk at a busy in-
tersection just outside of Shibuya station, where pedestrians in all directions
(including diagonal) get the green light at the same time. The main spatial
focus in this subgroup is located at that crossing. In the tweet texts we find ref-
erences to Tsutaya, which is a book store located on a corner of that crossing.
On the second floor of Tsutaya is a Starbucks coffee shop, whose numerous
window seats overlook the scramble crossing.

In contrast with the second subgroup, the fourth subgroup found in Tokyo
(D:Language == ‘es’ ∧ Place == Shinjuku-ku) concentrates on the same ward
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Figure 2.8: Runtime of BNPM vs. n.

(Shinjuku), but this time only on those people who tweet in Spanish. These are
more likely to be tourists. The spatial location of these people is concentrated
a few blocks to the west of Shinjuku station, where Tokyo Metropolitan Gov-
ernment Building is located. This building is famous for its observation deck,
which provides a view over all of Tokyo and, if the weather is good, of Mount
Fuji. This is the one place in Shinjuku which is of specific interest to tourists,
and our BNPM model manages to separate out these from the professionals in
the second subgroup. Notice also the interest expressed in the tweet texts of
the fourth subgroup for Disney, which is absent from the tweets of the second
subgroups.

Scalability In this chapter, we consider the scalability of our BNPM method
in the aspect of model learning. The theoretical time complexity of Algorithm
1 isO(MAX ×n× K̄). MAX represents the maximum number of loops we
run random search for hyper-parameter optimization (K̄ time) and collapsed
Gibbs sampling (n × K̄ time). K̄ represents the average number of latent
components. n represents the number of input subgroups. Figure 2.8 shows
the empirical relation between runtime behavior and n.
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2.7 Conclusion

We propose a novel method for modeling multi-modal dependency and capture
the uncertainty in multi-modal dependency. With this new method in EMM,
it is possible to mine exceptional spatio-temporal behavior on collective so-
cial media. Behavior in this setting can be exceptional in three distinct ways:
in terms of spatial locations, time, and texts. We develop a Bayesian Non-
Parametric Model (BNPM) to automatically identify spatio-temporal behav-
ioral patterns on the subgroup level, explicitly modeling the three exceptional
behavior types. Using a Chinese Restaurant Process, our model can cater for
several distinct forms of global behavioral patterns, while also allowing for
subgroup behavior that is exceptional with respect to all the kinds of global
behavior. This behavioral dissimilarity can manifest itself in any subset of
the three behavior types. The global distribution of the whole dataset can be
summarized by the mixture of behavioral patterns with mixture coefficients in
the components gathered by our model. We can also induce the distribution
of a candidate subgroup by calculating its posterior distribution with BNPM,
according to the behavioral data in that subgroup. The distance between the
posterior distribution of the candidate subgroup and the global distribution in-
dicates the exceptionality of that subgroup. This allows us to provide an effec-
tive evaluation method to measure the exceptionality of a behavioral pattern
and to employ it in finding exceptional subgroups with collective social be-
havior. We develop an efficient learning algorithm based on collapsed Gibbs
sampling to train the model.

We report results on datasets from various countries, continents, and cul-
tures: BNPM finds exceptional subgroups in Shenzhen (cf. Table 2.3), London
(cf. Table 2.4 and Figures 2.4 and 2.5), New York (cf. Figure 2.6), and Tokyo
(cf. Figure 2.7). The results in London illustrate how BNPM can discovery un-
usual spatio-temporal tweeting behavior that coincides with a specific event:
a Premier League football match of Chelsea F.C. (cf. Figures 2.4 and 2.5).
But the capabilities of BNPM range far beyond event detection, as illustrated
by the top subgroup found in Tokyo (cf. Figure 2.7, leftmost figure). Here,
we discover a subgroup whose spatial behavior mostly revolves around three
locations: two touristic attractions and a train station. The relevance of the
train station becomes apparent when analyzing the tweet text behavior of the
subgroup: the involved people frequently talk about a third touristic attrac-
tion 15 kilometers away, which is easiest reached by a train that departs from
the discovered station. Hence, the exceptionality of this subgroup can only be
properly appreciated by jointly analyzing the exceptionality of spatio-temporal
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and tweet text behavior, which is precisely what BNPM is designed to do. Sim-
ilarly, contrasting the second and fourth most exceptional subgroups found in
Tokyo, we can distinguish the professionals from the tourists in Shinjuku ward
by their exceptional joint spatial and tweet text behavior.

The four datasets analyzed in this chapter stem from four countries on
three continents. Hence, we illustrate that BNPM is effective across various
languages, religions, and cultures. In future work, it would be interesting to
further investigate exactly how the vastly varying language patterns affect the
proposed model.



3
Uncertainty in Dependency Modeling

“We cannot make the mystery go away by ‘explaining’ how it works. We will
just tell you how it works. In telling you how it works we will have told you
about the basic peculiarities of all quantum mechanics.”

The Feynman Lectures on Physics,
Richard P. Feynman, 1963.

3.1 Introduction

The aim of dependency modeling is to capture how variables interact with
each other. Exceptional Model Mining focuses on finding subgroups with un-
usual interactions, which can help us better understand the data and gain new
knowledge from the exceptional patterns. In general, we model the depen-
dencies between variables with functions (Caruccio et al., 2015); and define
quality measures to compute the change and deviation between those func-
tions in subgroups and the whole datasets. Challenges for this method are two-
folds: on the one hand, datasets with complex structures usually have high
dimensional interdependencies. Dimension reduction techniques are required
to achieve low-dimensional representations of the interdependencies and to
preserve original information as much as possible. On the other hand, obser-
vational datasets are usually imperfect, e.g. poor quality with missing infor-
mation, or imbalanced data distribution. These challenges bring uncertainty
to the dependency modeling and further influence the comparison of the de-
pendencies in subgroups and the whole dataset. Properly overcoming these
challenges can help us be aware of how much confidence do we have about
the correctness and significance of the exceptional subgroups discovered by
our algorithms. We develop systematic methods to capture the uncertainty in
dependency modeling. Results are shown with two practical applications.

39
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3.2 Practical Application in Fairness of Machine
Learning

3.2.1 Motivation

There are increasing demands for machine learning on diverse real-world ap-
plications such as policing (Brennan et al., 2009), lending (Mahoney and Mo-
hen, 2007) and credit scoring (Khandani et al., 2010). While recent advances
in machine learning put many focuses on fairness of algorithmic decision mak-
ing, topics about fairness of representation, especially fairness of network rep-
resentation, are still underexplored. Fair decision making has become more
and more important for machine learning research. Several notions have been
defined for algorithmic fairness (Dwork et al., 2012, Hardt et al., 2016, Za-
far et al., 2015). Among these methods, fairness is measured for individuals
or pre-defined groups based on statistical quantities like false positive / nega-
tive rates or classification rates. Recently, more and more papers notice that
the fairness of a decision making process is highly dependent on biases which
already exist in the data collection process (Chen et al., 2018a). Network rep-
resentation learning learns a function mapping nodes to low-dimensional vec-
tors. Structural properties, e.g. communities and roles, are preserved in the
latent embedding space. Fairness of representation learning receives a lot of
attentions (Edwards and Storkey, 2015, Song et al., 2018, Madras et al., 2018).
Among these methods, people are trying to learn similar representations for
different groups, to ensure that the consequent decision making is independent
of group attributes (Zhao and Gordon, 2019).

Despite the recent research focus on fair machine learning, the study of
fair representation in networks still lacks exploration. Comparing with existing
work, the challenges are two-fold: on the one hand, unlike statistical quanti-
ties of single decision variables, fairness of network representation requires to
compare multi-degree interactions between nodes. We need to develop a new
statistical measure to evaluate the differences between node representations.
On the other hand, as pointed out by some research, when we only ensure
fairness for some small amount of pre-defined subgroups, it might actually
increase rather than decrease model discrimination (Kearns et al., 2017). In
order to prevent this problem, we propose to investigate the fairness of net-
work representation by generating subgroups with regard to any combinations
of attributes. Computational cost would be very high due to the exponentially
increasing amount of subgroups. We tackle this problem by employing Excep-
tional Model Mining (Duivesteijn et al., 2016), a framework of generating and
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Figure 3.1: Toy example: dashed lines represent edges with attribute x = 0, solid
lines represent edges with attribute x = 1. Obviously, the distributions of nodes in
neighborhoods conditioned on different attributes (P (N(Vo)|x = 1), P (N(Vo)|x =
0)) are different. This can lead to very different representation functions.

evaluating subgroups by heuristically exploring the attribute space.

Before discussing fairness of network representation, we firstly focus on
structural heterogeneity in networks. Unknown heterogeneity across the data
can lead a model to be very effective for some subpopulations and ineffective
for some other subpopulations (Pearl, 2017). We argue in this chapter that the
potential unfairness of network representation is associated with the structural
heterogeneity in networks. In Figure 3.1, we demonstrate a toy example of
structural heterogeneity and show how it can affect the network representation.
As we can see, the network structure in subgroups ‘x = 1’ and ‘x = 0’ are
very different from each other. A random walk based neighborhood function
will generate different distributions of nodes in neighborhoods conditioned on
different attributes. The classical network representation model could be bi-
ased. These biased representations might lead to unfairness of consequential
decision making models. The study of fair machine learning should prevent
the propagation of bias from the data to modeling results (Madras et al., 2019).

3.2.2 Contributions

In this section, we argue that latent structural heterogeneity in the observational
data could bias the classical network representation model. The unknown het-
erogeneous distribution across subgroups raises new challenges for fairness in
machine learning. Pre-defined groups with sensitive attributes cannot properly
tackle the potential unfairness of network representation. We propose a method
which can automatically discover subgroups which are unfairly treated by the
network representation model. The fairness measure we propose can evaluate
complex targets with multi-degree interactions. We analyze the latent struc-
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tural heterogeneity across subgroups and discuss its effects on the fairness of
network representations. Top-Q subgroups with highest measurement scores
are reported to recover the fairness of a network representation model. In or-
der to investigate whether the reported subgroups represent significant signals
in the data, we conduct hypothesis testing against random noise. We conduct
randomly controlled experiments on synthetic datasets and verify our meth-
ods on real-world datasets. Both quantitative and qualitative results show that
our method is effective to recover the fairness of network representations. Our
research draws insight on how structural heterogeneity across subgroups re-
stricted by attributes would affect the fairness of network representation learn-
ing. The main contributions are:

• We study the problem of fairness in terms of the latent structural hetero-
geneity across subgroups in networks. As far as we know, this is the first
work which considers structural heterogeneity to measure the fairness of
network representation.

• We propose a new measurement, Mean Latent Similarity Discrep-
ancy (MLSD) to quantify the differences between node representations.
MLSD can calculate the statistical discrepancy between node represen-
tations which is sensitive to structural heterogeneity.

• We conduct hypothesis testing to verify the significance of fairness
score, distinguishing structural discrepancy from randomized noise. We
design a series of randomized experiments on synthetic and real-world
datasets to evaluate our method qualitatively and quantitatively.

3.2.3 Related Work

Previous work on fair machine learning mainly focuses on the level of a group
or individual. Pre-defined sensitive attributes are required, which is not appli-
cable in many real-world applications (Kearns et al., 2017). Fairness on groups
is normally measured by statistical parity, which requires positive / negative
rate to be equal across groups with regard to sensitive variables (Hardt et al.,
2016). Fairness on individuals requires similar individuals to be treated sim-
ilarly by the models (Dwork et al., 2012). In contrast, fairness of network
representation requires to compare more complex relations rather than a sin-
gle decision variable. For this reason, we propose MLSD which focuses on
measuring the statistical discrepancy between node representations.

Representation learning is specified to learn multiple degrees of similari-
ties between units (Mikolov et al., 2013b) in large datasets. This technique is
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Records Descriptive Variables Target Variables
r1 x1

1, . . . , x
1
k v1

o , v
1
d

...
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. . .
...

...
rn xn1 , . . . , x

n
k vno , v

n
d

Table 3.1: A network dataset of N edges over a set of nodes V = {v1, . . . , vm} and
attributes X= {x1, . . . , xk}.

widely used to discover word similarities known as word embedding (Mikolov
et al., 2013a) and node similarities known as graph embedding (Hamilton et al.,
2017). Network representation learning enables us to learn low-dimensional
vector representations for nodes from their neighborhood structures. There is
a lot of work on learning vector representations of nodes in graphs (Perozzi
et al., 2014, Grover and Leskovec, 2016) . Most existing work on fairness of
representation focuses on adversely learning fair representations across groups
and preserving highly predictive information for decision making (Zemel et al.,
2013). Conversely, we focus on fairness of network representation, which re-
quires definition of a new measurement with regard to the structural hetero-
geneity in networks. Our work can help people understand how structural
heterogeneity is correlated with attributes and how unfairness of network rep-
resentation exists by heuristically discovering subgroups.

Most of the existing model classes cannot handle structural properties in
networks. Weighted relative accuracy was introduced to evaluate character-
istics in subgraph (Bendimerad et al., 2016), first-order Markov chains have
been introduced as a model class for sequential data (Lemmerich et al., 2016).
However, structural properties, especially role structures (Jin et al., 2011) are
not considered in those methods.

In order to compare the network representations which preserve the struc-
tural properties, we design the MLSD quality measure, based on the U-
statistic (Korolyuk and Borovskich, 2013). MLSD calculates the mean dis-
crepancy between latent similarities of node vectors, reflecting the statistical
difference between network representations.

3.2.4 Methodology

Problem Setup We assume a dataset Ω: a set of M nodes v ∈ V and a bag
of N records r ∈ Ω of the form r = (x1, . . . , xk, vo, vd), where k is a positive
integer and vo, vd refer to a directed edge from the origin vo to the destination
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vd (cf. Table 3.1). We call x1, . . . , xk descriptive variables, and vo, vd target
variables. The descriptive variables are taken from an unrestricted domain
A. Mathematically, we define descriptions as functions D : A → {0, 1}. A
description D covers a record ri if and only if D(xi1, . . . , x

i
k) = 1. Subgroups

and quality measure can be defined following definition 1.1.1 and 1.1.2.

We can model the network as GD = (V,E,X,D), where V represents set
of M nodes, E set of N edges, X attributes attached on E, and D a descrip-
tion which is satisfied by X . We can define the neighborhood N(vo) ⊂ V
as a set of nodes generated by a sampling strategy starting from node vo. In
this chapter, we consider local community structures, though our method can
be easily extended to global role structure (Ribeiro et al., 2017). By defin-
ing the neighborhood function, we can formulate a distribution of nodes in
neighborhoods conditioned on attributes P (N(vo)|D). If there is structural
heterogeneity in networks, then we could have P (N(vo)|D) 6= P (N(vo)),
and P (N(vo)|D1) 6= P (N(vo)|D2) when D1 6= D2. We would use this prop-
erty to build the measurement for fairness of network representation.

By following the Skipgram model (Mikolov et al., 2013b), we can
learn a function θ : V → Rl, which maps each node v ∈ V to a l-
dimensional vector representation. We select θD to maximize the proba-
bility of visiting neighborhoods ND(vo) for each node in network: θD =
argmaxθD

∏
vo∈V p(ND(vo)|θD(vo)), where θD(vo) can be represented as uo.

We can formulate the problem of fairness in network representation as an op-
timization problem of searching subgroups with highest quality scores:

Problem 3.2.1 Given a dataset Ω ∼ P (X,V,E), a network representation
model θ : V → Rl, and a quality measure ϕ, our task is to find a sequence of
Q descriptions h = {D1, . . . , DQ}, such that ∀D′ ∈ D \ h, ϕ(D′) < ϕ(D),
∀D ∈ h.

Quality Measure: MLSD Node representations preserve the structural
properties from the original networks. In order to measure the fairness across
subgroups, we would like to evaluate the difference between node representa-
tions learned from that subgroup and learned from the whole dataset. To realize
that, at first we need to elicit a latent similarity matrix ZD, which indicates the
similarities between each node and any other nodes:

ZijD =
d(ui, uj)∑V
j 6=i d(ui, uj)

,
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where d(ui, uj) is a distance measure between node i and j in the latent em-
bedding space, and

∑V
j 6=i d(ui, uj) is a normalizer that ensures

∑V
j 6=i Z

ij
D = 1.

Note that we do not consider self loop edges so we let d(ui, ui) = 0. Now we
can compare the latent similarity matrix ZD from candidate subgroup with ZΩ

to the whole data by using U-statistics (Korolyuk and Borovskich, 2013):

ϕu(D) =
1

m(m− 1)

m∑
i=0

m∑
j 6=i
|ZijD − Z

ij
Ω |1.

By virtue of variance, heterogeneous structures are likely to occur in small
subsets of the dataset (Duivesteijn et al., 2016), which are not the results we
want. To combat this problem, we incorporate the size of subgroups in the
quality measure, by considering the entropy of the split between the records in
subgroups and the rest of the records (Duivesteijn et al., 2010):

ϕent(D) = −|D|
n

log2

(
|D|
n

)
− n− |D|

n
log2

(
n− |D|

n

)
.

The final quality measure can be derived as:

ϕMLSD(D) =
√
ϕent(D) · ϕu(D).

By this quality measure, higher ϕMLSD(D) indicates that the network represen-
tation is more unfair on that subgroup. By applying a search method guided
by ϕMLSD(D), we can derive the solution for problem 3.2.1.

Statistical Test In Problem 3.2.1, we report the top-Q subgroups with the
highest scores calculated by quality measure. However, we do not know
whether the scores are significant enough or just slightly different because of
the random noise. To solve this problem, we assume that the reported vector
of top-Q scores is a random draw from distribution P. We propose to inde-
pendently run our method several times to generate a set of samples from P,
denoted by H := {h1, · · · , hx}. On the other hand, we randomly shuffle
the original data, by permuting the attribute vectors attached with edges in
row (Batagelj and Brandes, 2005). This can break the dependencies between
descriptive variables and targets, and build datasets where the descriptive vari-
ables are independent of network structures. After that, we apply our method
on each of the shuffled datasets to generate false discoveries1. By doing this,

1Because now we already know the ground truth: the descriptive variables and network
structures are independent.
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we can generate a set of samples from the distribution of false discoveries
(PDFD ) (Duivesteijn and Knobbe, 2011), denoted by H̃ := {h̃1, · · · , h̃y}.
Now we can build the null hypothesis by assuming that H and H̃ are from the
same distribution:

Hypothesis 3.2.1 P and PDFD are the same distribution.

If the null hypothesis is rejected, then we can be confident that the top-Q sub-
groups reported by our method are statistically significant. We can define the
problem as:

Problem 3.2.2 Let h and h̃ be random variables defined on a topological
space H, with distribution P and PDFD . H := {h1, · · · , hx} and H̃ :=
{h̃1, · · · , h̃y} are defined as independently and identically distributed samples
from P and PDFD respectively. The problem is to establish a statistical test
and conduct hypothesis testing to decide whether P = PDFD .

The main challenge for Problem 3.2.2 is that h and h̃ are multivariate (Q-
length) and we do not have any prior knowledge about distribution P and
PDFD . Hence, classic Student’s t-test and Hotelling’s T 2-test are not appro-
priate. Inspired by (Gretton et al., 2012), we use an integral probability met-
ric (Müller, 1997) based on distances between Hilbert space mean embeddings
of probability distributions, termed as maximum mean discrepancy (MMD).
Let F be a family of functions f : H → R, we have:

MMD [F , P, PDFD ] := sup
f∈F

(EP [f(h)]− EPDFD
[f(h̃)]),

where h and h̃, P and PDFD follow Problem 3.2.2. Empirically, we can derive
the unbiased estimate of the squared MMD in terms of kernel functions ψ as:

MMD2
u[F ,H, H̃] =

1

x(x− 1)

x∑
i=1

x∑
j 6=i

ψ(hi, hj)+

1

y(y − 1)

y∑
i=1

y∑
j 6=i

ψ(h̃i, h̃j)−
2

xy

x∑
i=1

y∑
j=1

ψ(hi, h̃j),

which is a sum of two U-statistics and a sample average. Following (Anderson
et al., 1994), we would like to use asymptotic distribution of MMD2

u under
null hypothesis for the hypothesis testing, by assuming that P and PDFD are
identical. Hence if we generate two new data samples from the aggregated data
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samples after random shuffle, the MMD2
u should not change. We can construct

null distribution by re-shuffling the aggregated data samples and re-computing
the MMD2

u a lot of times. Given a significance level α, if MMD2
u is so large

as to be outside the 1 − α quantile of the null distribution, we can reject the
null hypothesis, otherwise we accept it.

3.2.5 Experiments

In this section, we design synthetic and real-world experiments to validate our
methodology against the following questions:

QS1 When there exists a latent structural heterogeneity, will the classical net-
work representation model like node2vec perform fairly across different
subgroups?

QS2 Can our method effectively measure fairness of network representation
considering structural heterogeneity in subgroups?

QS3 Are the fairness measurement scores reported by our method significant
enough compared to the random noises?

The most difficult problem for evaluating our methods is the lack of ground
truth. For an observational dataset, we do not know whether there is structural
heterogeneity and consequently we cannot know whether we can correctly
measure the fairness. To overcome this, we design experiments with synthetic
data generated by controlling the dependencies between descriptive variables
and the network structures. By doing this, the experiments can evaluate the
performance of our method by comparing them with the ground truth. For
real-world datasets, we will never know the ground truth, but the statistical test
can help us to evaluate the methods against the random baselines. Qualitative
and visual analysis can be used to show the effectiveness of the discoveries.

Synthetic datasets with ground truth As synthetic datasets, we employ
modified versions of the two datasets from (Girvan and Newman, 2002). The
two datasets are called Karate and Football. We keep the original nodes and
community label and drop all the connections. The generating process of the
synthetic datasets is governed by following parameters: the number of records
N , the number of descriptive variables K, the set of nodes V , and the set
of ground truth labels Y indicating communities. We propose a randomized
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(a) KarateX4n1k. (b) FootballX4n10k.

Figure 3.2: Randomized synthetic datasets with ground truth. Rectangles with solid
lines denote ground truth subgroups. Rectangles with dash lines denote the subgroups
reported by our method.

technique to model the dependencies between target variables vd, vo and de-
scriptive variables x1, . . . , xk. Two kinds of heterogeneous structures are gen-
erated: one is a community structure in subgroups against uniform distribu-
tion of edges in global, another is a core-periphery structure (Borgatti and Ev-
erett, 2000). We visualize two examples ‘KarateX4n10k’ (K=4, N=10, 000,
|V |=34) and ‘FootballX4n10k’ (K=4, N=10, 000, |V |=115) in Figure 3.2. In
Figure 3.2a, triangles represent the edges inside communities and dots repre-
sent uniform sampled edges between any pair of nodes. We can see that blue
triangles are distributed uniformly except in the black rectangle. In the ground
truth subgroup, the edges only exist in the local community. In Figure 3.2b,
we synthesize a simple core-periphery structure. This is one of the simplest
global role structures which consists of dense and cohesive core nodes as well
as sparse and unconnected periphery nodes.

Real-world datasets As real-world datasets, two kinds of data are used
for the experiments: (1) the original edge connections; and (2) extra data
about the contextual information. We collect the original edge connections in-
cluding ‘New York Taxi’ (http://www.nyc.gov/html/tlc/) (K=33,
N=1, 013, 845, |V |=265) and ‘Sharing Bike’ (https://datasf.org/
opendata/) (K=27, N=983, 000, |V |=70), as well as the contextual infor-
mation, e.g. weather records (https://www.ncdc.noaa.gov/) and taxi

http://www.nyc.gov/html/tlc/
https://datasf.org/opendata/
https://datasf.org/opendata/
https://www.ncdc.noaa.gov/
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KarateX4n10k

D ϕMLSD(D) |D|
N

x1 ≤ 4.86 ∧ x2 ≤ 4.86 .0225 .188
x1 ≤ 3.57 ∧ x2 ≤ 4.86 .0224 .188
x1 ≤ 4.86 ∧ x2 ≤ 3.57 .0201 .128
x1 ≤ 3.57 ∧ x2 ≤ 3.57 .0196 .123
x1 ≤ 6.14 ∧ x2 ≤ 4.86 .0076 .249

FootballX4n10k

D ϕMLSD(D) |D|
N

x2 ≥ 6.14 ∧ x1 ≥ 4.86 .0047 0.244
x2 ≥ 6.14 ∧ x1 ≥ 6.14 .0015 0.182
x2 ≤ 4.86 ∧ x1 ≤ 4.86 .0015 0.182
x1 ≤ 4.86 ∧ x2 ≤ 3.57 .0014 0.124
x1 ≤ 3.57 ∧ x2 ≤ 4.86 .0014 0.124

Table 3.2: Top-5 subgroups discovered on KarateX4n10k. The higher ϕMLSD(D), the
more unfair. |D|

N indicates the coverage of subgroups.

information. By choosing these two datasets, we would like to show how net-
work representation model can be biased by attributes like weather conditions.
Consequently the downstream tasks (e.g. transportation prediction on spe-
cific weather conditions) could also be biased using the representations learned
from the whole data. From these experiments we show that study for fairness
of network representation has broad application fields.

Implementation details For the implementation of node representation
learning, we build the algorithm based on Node2vec (Grover and Leskovec,
2016). For each candidate subgroup, we construct the graph with edges cov-
ered by that subgroup and use a random walk algorithm considering the ag-
gregated edge weights to generate the training labels. After getting the node
representations, we compare them with node representations learned from the
whole data. To explore the attribute space with exponential amounts of sub-
groups, we use beam search guided by the quality score heuristically. The
beam search algorithm is built based on (Duivesteijn et al., 2016, Algorithm
1). We set the beam width to 5 and depth to 2. All the experiments are con-
ducted on Linux computing clusters with CPU: 2x Intel Xeon @ 2.1GHz and
RAM: 1024GB.
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KarateX4n10k FootballX4n10k
Q TPR PPV Q TPR PPV
5 .61 .94 5 .69 1.0

10 .40 .86 10 .53 .96
25 .36 .71 25 .44 .52
35 .36 .65 35 .28 .51
50 .33 .50 50 .28 .50

Table 3.3: Experimental results on synthetic datasets. The higher TRP and PPV the
better.

Experiments on Synthetic Data To validate our method against QS1 and
QS2, we conduct experiments on the two synthetic datasets with different set-
tings mainly by varying parameterQ, which indicates how many subgroups we
are going to report. The top-5 subgroups are reported in Table 3.2. As shown
in Figure 3.2, our algorithm can discover the pre-imposed structures with good
accuracy.

The subgroups we found cannot always be precisely the ground truth. The
rectangles with black solid lines and the rectangles with red dot lines are
slightly mismatching (cf. Figure 3.2). There might be two reasons for that.
On the one hand, we employ a 8-bin equal-width binning strategy to partition
the space of descriptive variables denoted by continuous numerical values. On
the other hand, we prune the result set based on overlapping coverage to reduce
redundant discoveries. Hence, we plan to evaluate more about the predictive
ability of our method. According to the known label of each edge, we can cal-
culate averaged number of edges covered by discovered subgroups to build the
confusion matrix. We choose true positive rate (TPR) and positive predictive
value (PPV) as the evaluation indicators.

Table 3.3 displays the results; larger TPR and PPV indicate better results.
We can see that for the same dataset, with the increasing of Q, MMD2

u , TPR
and PPV decrease. One reason for this phenomenon is that the forced diversity
of discovered subgroups works against identification of the single ground truth
subgroup. Another reason is that larger Q allows for subgroups with lower
qualities, so that some records without label of ground truth are discovered by
our method. We also notice that the PPV of finding subgroups by our method
are always larger than 50%, which shows that our method can reliably retrieve
ground-truth subgroups.

In order to validate our method against QS3, we run our algorithm on the
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(a) KarateX4n10k. (b) FootballX4n10k.

Figure 3.3: Comparisons of quality score distributions.

(a) KarateX4n10k. Q=10. (b) FootballX4n10k. Q=10.

Figure 3.4: Visualization of null distribution and MMD2
u on KarateX4n10k and Foot-

ballX4n10k datasets.

randomly shuffled datasets for 100 times to generate negative samples. In
Figure 3.3, we plot the quality scores in different experiments with Q ranging
from 5 to 50, as well as the quality scores from negative samples. We can
see that there is a large gap between quality scores of reported subgroups and
the false discoveries. One reason is that with synthetic algorithm, we impose
very different structural properties. Also we noticed that there are many low
ranked subgroups dropping into the region of false discoveries. The reason is
that the number of pre-imposed discriminated subgroups are less than the Q.
Then we conduct the hypothesis testing to investigate whether the differences
between our discoveries and the false discoveries are significant enough. In
Figure 3.4, we visualize the null distribution and report p-value with Q = 10
on KarateX4n10k and FootballX4n10k. As we can see intuitively, the MMD2

u
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(a) Quality distribution bike. (b) Quality distribution taxi.

Figure 3.5: Quality score comparisons on dataset Sharing Bike and New York Taxi.

(a) Bike. Q=10. (b) Taxi. Q=10.

Figure 3.6: Visualization of null distribution and MMD2
u on bike and taxi datasets.

is far from null distribution. We can be confident that our method can beat
false discoveries generated from random baselines. We also noticed that based
on the p-values we can reject the null hypothesis at 1% significance level.

Experiments on Real-world Datasets Similar experiments are conducted
on the real-world datasets, except calculating TRP and PPV due to the rea-
son that we do not know the ground truth. In Figure 3.5, we plot the qual-
ity scores of discovered subgroups in different experimental settings with Q
ranging from 5 to 50. We can see that in the real-world datasets, the quality
decreases more smoothly than in the synthetic. One reason might be that in the
real-world datasets, there are many kinds of combinations between structural
properties and descriptive variables. Another reason might be that the attribute
space and number of edges are much larger than the synthetic datasets so that
the performance of network representation models are more diverse. As we
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Dataset D ϕMLSD(D) |D|
N

Sharing Bike

MaxHumidity <= 74.0
∧ ZipCode ! = ’10010’

.01090 .194

MinTemperatureF > 50.0
∧MaxTemperatureF > 70.0’

.01081 .232

MaxHumidity <= 74.0
∧ ZipCode ! = ’7050’

.01073 .194

MaxHumidity <= 74.0
∧ ZipCode ! = ’77450’

.01069 .194

MaxHumidity <= 74.0
∧ ZipCode ! = ’19119’

.01066 .194

New York Taxi

month > 7.0
∧ PaymentType <= 1.0

5.85e-4 .211

TMIN > 61.0
∧ PickupHour <= 14:00

5.58e-4 .126

month > 7.0 ∧ AWND <=5.24 5.54e-4 .272
month > 7.0 ∧ TMIN > 42.0 5.41e-4 .279
month > 7.0 ∧ TMAX > 54.0 5.38e-4 .300

Table 3.4: Experiments on real-world datasets. Higher ϕMLSD(D) means more unfair.

can see in Figure 3.6, the MMD2
u and p-values give us confidence to believe

that there are significant differences between the subgroups reported by our
method and the false discoveries. In Table 3.4, we report the top-5 subgroups
in both datasets. We can see from the descriptions that the weather conditions
and urban regions are highly related with the heterogeneous structures. This
indicates that the decision models might be more vulnerable and discriminated
under such conditions.

Empirical Clustering Analysis To further explore these results, we conduct
clustering on taxi zones in New York using k-means algorithm with the learned
representations from taxi transitions. We use the discovered subgroups above
and the whole dataset as the input to train representations for each taxi zone.
On the one hand, we would like to see how these clusters are different between
reported subgroups and the whole dataset. On the other hand, we would like
to see how the representations of taxi zones are changing with the changing of
descriptive variables.
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(a) Land Use. (b) Ω.

(c) ‘SNWD>0.0∧AWND≤ 7.86’. (d) Passenger> 5.

Figure 3.7: Taxi zone clusters with representations.

To conduct this comparison, we employ the land use data in New York
(https://zola.planning.nyc.gov/) as a reference of the ground
truth. The assumption is that taxi zones with similar land use types are sim-
ilar to each other. Based on this assumption, we count the land use types in
each taxi zone, and compute the distribution of land use types as the represen-
tation of each taxi zone. We visualize these clustering results in Figure 3.7.
By comparing those clusters in Figure 3.7a with the clusters learned on the
whole dataset (cf. Figure 3.7b), we found the similarities between taxi zones
can be preserved relatively well. In Figure 3.7c, John F. Kennedy International
Airport shows different role with nearby zones, while it shows the same role
with the Manhattan area. In Figure 3.7d, we can see that for ‘passenger > 5’,
many zones that are distinguished in previous subgroups become more sim-
ilar. These results empirically show the structural heterogeneity in different
subgroups. For fair decision making, a network representation model should

https://zola.planning.nyc.gov/
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Figure 3.8: Heterogeneity and inconsistency of student behavior.

tackle this heterogeneity to learn fair as well as informative representations.

3.3 Practical Application in Educational Data Mining

Behavioral records collected through course assessments, peer assignments,
and programming assignments in Massive Open Online Courses (MOOCs)
provide multiple views about a student’s study style. Study behavior is corre-
lated with whether or not the student can get a certificate or drop out from a
course. It is of predominant importance to identify the particular behavioral
patterns and establish an accurate predictive model for the learning results,
so that tutors can give well-focused assistance and guidance on specific stu-
dents. However, the behavioral records of individuals are usually very sparse;
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behavioral records between individuals are inconsistent in time and skewed
in contents. These remain big challenges for the state-of-the-art methods. In
this section, we engage the concept of subgroup as a trade-off to overcome
the sparsity of individual behavioral records and inconsistency between in-
dividuals. We employ the EMM framework to discover exceptional student
behavior. Various model classes of EMM are applied on dropout rate analysis,
correlation analysis between length of learning behavior sequence and course
grades, and passing state prediction analysis. Qualitative and quantitative ex-
perimental results on real MOOCs datasets show that our method can discover
significantly interesting learning behavioral patterns of students.

3.3.1 Motivation

Massive Open Online Courses (MOOCs) make it possible for educators to an-
alyze learning behavior of students in multiple views. In contrast to traditional
classes, which only have limited learning behavioral records, MOOC platforms
such as Coursera, edX and Udacity provide huge amounts of learning behav-
ioral records. These platforms collect very detailed course information and
students’ learning behavior such as course assessments, peer assignments, pro-
gramming assignments, forum discussions and feedback (Seaton et al., 2014),
which can reflect the knowledge and skill achievements and the study per-
formance of students. Modeling students’ learning behavior and trying to dis-
cover interesting behavioral patterns are non-trivial tasks. Most recent research
is focused on how to predict the learning results based on the learning behavior
model. It can help the tutors to design the courses and give specific guidance
and assistance to specific students. However, due to the complexity of the
behavioral records, there remains several challenges to overcome:

Individual sparsity. Even when many students are enrolled in a course, the
duration of their involvement varies substantially. Figure 3.8a displays a his-
togram of assessment question frequencies, which shows an obvious Power-
Law distribution (Barabási and Albert, 1999). Only a few students participate
in hundreds of assessment questions. Most of the students have activity length
less than 20 records, which is very sparse. This makes evolutionary activity
sequence based user modeling methods (Qiu et al., 2016, 2013) ineffective.

Activity inconsistency. Beyond the distribution in activity length of assess-
ment questions, students’ learning behavior in forum discussion, click stream



3.3. PRACTICAL APPLICATION IN EDUCATIONAL DATA MINING 57

and peer review are also shown to follow a Power-Law distribution. In Ta-
ble 3.7, we can see that among the 18 courses on Coursera, enrolled students,
grades and students who passed the course are highly diverse. This inconsis-
tency makes the data very imbalanced, which results in difficulties for Ma-
trix factorization based modeling methods (Zhao et al., 2015). These methods
might merge infrequent behaviors with common behaviors.

Content heterogeneity. Behavior diversity is not only shown in activity
length and course status, but also shown in informative contents. There are
7 types of assessments and 12 types of questions in the courses, such as video,
summative, checkbox and multiple checkbox. Proportions of these assess-
ments and questions are skewed in different courses. On the other hand, stu-
dents also have varying participation records on these contents. In Figure 3.9,
it is shown that distributions of students are obviously different in specific de-
mographic categories. It is a big challenge for modeling methods to handle
these heterogeneous contents for tasks like dropout prediction or passing state
prediction.

3.3.2 Contributions

To overcome these challenges, we propose to employ EMM for exceptional
learning behavior analysis. Instead of looking for anomalies or outliers of in-
dividuals, we look for exceptional behavior on the subgroup level, which can
provide interpretable descriptions such as ‘Students: Country = US, Region
= Manhattan, Join dates > 365 (days)’ having exceptional learning behaviors
that are predominantly different from those in the whole dataset. We employ
EMM to discover interesting learning behavioral patterns in subgroups. We
establish various model classes for specific learning behaviors, such as dis-
covering correlation between length of behavior sequence and course grades,
finding out subgroups with exceptional dropout ratio, and looking for specific
subsets where the classifier does not perform well. Experimental results on a
real dataset illustrate the type of meaningful learning behavioral patterns EMM
can discover in MOOCs. This can help us build an improved behavior model
in the future research. In summary, our main contributions are:

• We employ EMM to learning behavior analysis in MOOCs, which can
help us to overcome the sparsity, inconsistency and heterogeneity in the
behavioral records.

• We employ several EMM model classes for different tasks to discover
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Figure 3.9: Student distributions across various demographic categories.

exceptional learning behaviors on the subgroup level. Our results show
very interesting learning behavioral patterns, which can help the tutors
conduct specific guidance and assistance to the students.

3.3.3 Related Work

Learning behavior modeling for students in MOOCs is generally aimed at
predictive analytics such as dropout prediction, passing state prediction, and
grades prediction. For instance, latent factors and state machines are employed
to model the hidden study state of students for a predictive task (Ramesh
et al., 2014, Qiu et al., 2016, Wang and Chen, 2016). Khajah et al. (Khajah
et al., 2014) integrate Latent factor and knowledge tracing with a hierarchical
Bayesian model, which can consider the study skill for prediction tasks. Re-
current Neural Network (RNN) and Long Short-Term Memory (LSTM) have
been used to model study trajectories for the learning results prediction (Piech
et al., 2015, Wang et al., 2017). Most of these existing methods focus on
modeling individual behavior but do not consider the sparsity, inconsistency
and heterogeneity of learning behavior data. Our methods focus on discover-
ing exceptional learning behaviors on the subgroup level, which provide inter-



3.3. PRACTICAL APPLICATION IN EDUCATIONAL DATA MINING 59

pretable information about where the predictive model does not perform well.
This allows us to establish an improved model for prediction tasks for both
normal and exceptional behavioral patterns.

3.3.4 Exceptional Learning Behavior Analysis

Our dataset originates from the learners involved in the EIT Digital MOOCs
at Coursera. EIT Digital, as part of the European Institute for Innovation and
Technology, aims to drive Europe’s digital transformation, also for education.
The EIT Digital academy is focused on mobility and entrepreneurship and is
at the forefront of integrating education, research, and business. The MOOCs
in the online programme, have been developed by the partner universities in-
volved in the EIT Digital Master School in Embedded Systems, in a best of
breeds approach.

Together, the MOOCs form the EIT Digital online programme “Internet
of Things through Embedded Systems”. The online programme aims to build
the reputation of EIT Digital, the partner universities, and the involved teach-
ers. It also helps to renew pedagogy through scalable education technologies
and data driven education. Learning analytics are at the core of this feedback
mechanism. The online programme is comparable to an edX’s micromaster
and similarly offers an online equivalent of a 25 ECTS first semester; the on-
line programme offers learners to study at their own pace, any time, any place.
Moreover, they first can have a try before they commit themselves to the whole
master programme. Once selected and admitted on campus, the learners can
finish the double degree master programme of EIT Digital Master School in
Embedded Systems.

Figure 3.9 displays the distributions of students across various demo-
graphic categories. In order to catch the inherent imbalance, we use demo-
graphic columns as the left hand attributes, to formulate subgroup descriptions.
In the data preprocessing process, we convert the join dates, which represents
how long a student has registered in Coursera, from the format of ‘Datetime’
to the integer days. The following three sections illustrate what kind of discov-
eries can be made by wielding various tools from the EMM toolbox.

Exceptional Dropout Rate Analysis In this section, our task is to find out
the subgroups which have significantly different dropout rate compared with
the whole dataset. For the purposes of this section, we define a dropout student
to be a student who has participated in at least one assessment question, but has
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Figure 3.10: Dropout ratio of students by country.

not obtained an overall course grade. In Figure 3.10, we present the countries
of students with most common frequencies, as well as the dropout rate of stu-
dents in those countries. We can see that both the frequencies and dropout rate
in those countries varies a lot. The high dropout rate is usually seen as a defect
of MOOCs. If we were to discover what kinds of students have exceptional
dropout rates, then that would allow us to direct specific guidance to those stu-
dents that most require it. Traditional partition and clustering methods are not
qualified for this task, because they cannot provide interpretable results about
the subsets of students and quantitative information about how different the
subsets of students are from the whole dataset. To address this problem, we
propose to engage subgroups as a partition for the whole dataset, and look for
subgroups that have most exceptional dropout rate comparing with the whole
dataset. To this end, we employ Weighted Relative Accuracy (WRAcc) (van
Leeuwen and Knobbe, 2011):

ϕWRAcc =
|GD|
N

(
SD
|GD|

− SΩ

N

)
Here, |GD| represents the number of records covered by subgroup descrip-
tion D, SD represents the number of dropout students in subgroup GD, SΩ

represents the total number of dropout students in the whole dataset, and N
represents the number of students who join this course and participated in at
least one assessment question.

The beam search algorithm as described in (Duivesteijn et al., 2016, Algo-
rithm 1) is parameterized with beam width 20 and search depth 4. The overall
dropout rate is 0.4286. In Table 3.5, we presents the top-5 subgroups with
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Table 3.5: Exceptional dropout rate in subgroups. Results show subgroups with
highly exceptional dropout rate. The overall dropout rate is 0.4286.

D ϕWRAcc dropout |GD|
Country = OM, Was Group Sponsored ¬ True,

Was Finaid Grant ¬ True
0.0338 0.0 42

Region = MOW, Gender ¬ male,
Join Date ≤ 1011, Join Date > 389

0.0336 0.0 57

Country = KR, Gender ¬ female,
Profile language ¬ ko

0.0330 0.7812 32

Country = KR, Educational status ¬MASTER,
Gender ¬ female, Was Group Sponsored ¬ True

0.0313 0.7742 34

Country = KR, Was Group Sponsored ¬ True 0.0304 0.7222 36

most exceptional dropout rate. The subgroup with description “D: Region =
MOW, Gender ¬ male, Join Date between 389 and 1011” has a dropout rate
of zero: all students in that subgroup complete the course. On the other hand,
the subgroup with description “D: Country = KR, Gender ¬ female and Profile
language ¬ ko”, has an elevated dropout rate of 0.7812: most of these students
drop out. Based on these results, we can conclude that Korean males who
have set their profile language to something other than Korean, are in need of
more attention. This may be a group of students who are foreigners in Korea,
or Koreans who are studying in a language which is non-native to them. By
identifying such at-risk groups, educators can more effectively channel their
remedial activities.

Exceptional Correlation Analysis In general opinion, the more active a stu-
dent is, the higher grades she is promising to get. Is this always the case? To
answer this question, we look into the relation between the activity length (de-
noted by q) of students and the overall grades (denoted by g) in a course. We
engage the correlation model class for EMM to realize this task. In this model
class, we can estimate the correlation coefficient by calculating the sample
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Figure 3.11: Exceptional correlations in subgroups.
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Table 3.6: Exceptional correlation analysis between length of behavior sequence and
course grades. The overall correlation coefficient ρ is 0.7406.

D ϕscd ρ |GD|
Country = LT, Join Date > 701,

Browser language ¬ et-EE
0.9999 0.9782 11

Region = 6 0.9994 -0.1272 10
Region = QUE 0.9992 -0.0788 11
Country = NP 0.9985 0.9630 11
Browser language = es-MX 0.9973 0.1203 7

correlation as follows:

r̂ =

∑
(qi − q̄)(gi − ḡ)√∑

(qi − q̄)2∑ (gi − ḡ)2

z′ =
1

2
ln
(

1 + r̂

1− r̂

)
z∗ =

z′ − zC√
1

|GD|−3 + 1
|GC

D|−3

(3.1)

Here, r̂ represents the sample correlation, qi, gi represent the activity length
and course grade of each student, and q̄, ḡ represent their average values over
the dataset. Equation (3.1) is the Fisher z transformation, z′ in the lower equa-
tion represents the z′ computation on the subgroup and zC on its complement,
and |GD| represents the number of records covered by subgroup with descrip-
tion D. Under the null hypothesis that the correlation between q and g is the
same inside and outside of the subgroup, z∗ follows a standard normal distri-
bution. Hence, the value for z∗ implies a p-value under this null hypothesis.
Leman et al. (Leman et al., 2008) propose to use one minus this p-value as
quality measure ϕscd: the higher this value is, the more certain we are that the
null hypothesis is false and hence exceptional correlations are observed.

Using this quality measure, we conduct the experiment with beam width 20
and search depth 3. In Table 3.6 and Figure 3.11, we list the top-5 subgroups
with exceptional quality score, coefficients, and coverage. We can see that
some students gain extremely high grades with longer behavior sequence (cf.
Figure 3.11b, 3.11e); some students have longer behavior sequence length but
lower grades (cf. Figure 3.11c, 3.11d); and for some subgroups, the length
of behavior sequences has no obvious correlation with the grades (cf. Figure
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3.11f). We can deduce that the efforts that some students spend in the study
are not directly correlated with their learning results.

Exceptional Classifier Behavior Analysis Students’ behavioral records in
MOOCs are sparse, inconsistent and heterogeneous. Learning behavior could
be very different in some students comparing with the others. This imbalance
increases the difficulty of training a classifier that can perform well on each
part of the dataset. This makes it difficult to train a model that is qualified for
tasks like dropout prediction and course passing state prediction.

In this section, we investigate whether learning behavior can predict
whether or not a student can pass the course. At the same time, we investigate
in which parts of the dataset the classifier does not work well. In previous parts,
we have presented that EMM can effectively discover exceptional learning be-
havioral patterns in MOOCs. We will continue using the EMM framework
to find where our predictive model does not work well in the dataset. Con-
sidering the activities of students in assessments, forum discussions and peer
assignments, we formulate the passing state prediction problem as follows:

f : X i → Y i

Our aim is to train a classifier f that can automatically mapX i to Y i, whereX i
is a 8-tuple (si,mi, oi, ci, bi, ei, hi, pi) feature vector representing the length
of assessment and question sequence (si), number of assessment types (mi),
number of question types (oi), number of correctly answered questions (c),
number of asked, answered and liked questions in the forum (bi, ei, hi), and
peer review score (pi), and where Y is the label of passing state: {0, 1}. We
normalize the features into 0 to 1 as the input values.

At first, the classifier is trained on the whole dataset. This model will
classify some students correctly and some students wrongly; in any case we
find a value of predicted labels Ŷ . These two binary values Y and Ŷ will agree
and disagree on some students, and that interaction can be used to capture the
quality of the classifier predictions in a single number. We use the f1 score to
capture the quality of classifiers:

ϕf1 = 2 · Precision · Recall
Precision + Recall

(3.2)

However, we can perform the exact same computation for a subset of the vec-
tors Y and Ŷ , for instance the subset induced by a subgroup. Thus, we employ
ϕf1 as a quality measure for EMM.
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Table 3.8: Exceptional classifier behavior for course passing state prediction. Results
indicate that the classifier cannot work well on these exceptional subgroups.

D ϕf1 |GD|
Country = OM, Profile language = en-US,

Browser language ¬ en-US,
Educational status ¬ BACHELOR DEGREE

0.5051 32

Country = OM, Profile language ¬ en-US 0.4058 22
Region = MA, Gender = female,

Educational status=COLLEGE NO DEGREE
0.3489 24

Country = OM, Met Payment Condition ¬ True 0.3464 31
Join Date ≤ 390, Region ¬MA 0.3193 28

We conduct the experiment by setting the search depth to 4 and beam width
to 10. We engage an (Support Vector Machine) SVM classifier as the predic-
tive model2, which has 0.85 as f1 score on the whole dataset. In Table 3.8
we list the top-5 subgroups with exceptional behavior. We can see that even
though the classifier performs well on the whole dataset, in some subgroups it
does not. Particularly for the students described by descriptions like “D: Re-
gion = MA, Gender = female, Educational status=COLLEGE NO DEGREE”,
the classifier performs poorly on the prediction task at hand: the support vec-
tor machine has trouble predicting the study success of Massachusets women
without a college degree. Hence, this group requires a more sophisticated clas-
sifier.

3.4 Conclusion

In this chapter, we study the uncertainty in dependency modeling considering
the heterogeneous and high-dimensional interactions between target variables.
We develop new quality measures for Exceptional Model Mining with two
practical applications: exceptional study behavior analysis and fairness in net-
work representation.

In exceptional learning behavior analysis for MOOC, rather than predict-
ing the success of individual students, which is difficult due to the inherent
sparsity, inconsistency, and heterogeneity of the data, EMM specializes in
identifying coherent groups that behave differently from the norm. Since the

2one may plug in one’s preferred classifier; SVM selection is merely meant as an illustration,
not an endorsement.
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subgroups resulting from EMM come with an easily interpretable definition,
exceptional model mining allows educators to more effectively channel their
remedial activities.

We employ three EMM model classes for different tasks of learning be-
havior analysis. Experimental results on a real Coursera dataset show that for
some students, the dropout rate is very different from the whole dataset, the
learning efforts are not always correlated with course grades, and a classifier
that performs very well on the whole dataset has trouble on some subpopula-
tions of the data.

For fairness in network representation, we argue that the structural hetero-
geneity in networks can bias the network representation models across sub-
groups, which will prevent us from building fair decision making models for
downstream tasks like node classification or link prediction. However, the un-
known distribution of structural heterogeneity raises new challenges for fair-
ness measurement. Pre-defined groups with sensitive variables are not proper
for overcoming the new challenges, and statistical parity with regard to de-
cision variable cannot be helpful for comparing the multi-degree interactions
between node representations. We analyze the connections between the struc-
tural properties and the node representations in networks. Then we design a
framework to compare the node representations learned from subgroups with
the node representations learned from the whole data. The differences be-
tween them indicate that the structural properties in subgroups are ignored by
the network representation model. The higher the difference, the more un-
fair the model is on those subgroups. The discovery process is automatically
guided by a search algorithm defined over the description space, with a quality
measure over the learned node representations, called Mean Latent Similarity
Discrepancy (MLSD). We evaluate the statistical significance of the discovered
subgroups by applying a kernel two-sample test. To validate the effectiveness
of our method, we use randomization techniques to generate synthetic datasets
with ground truth. This allows us to evaluate the performance of our method
quantitatively and qualitatively.





4
Uncertainty in Causal Dependency

“Human reason has this peculiar fate that in one species of its knowledge it is
burdened by questions which, as prescribed by the very nature of reason itself,
it is not able to ignore, but which, as transcending all its powers, it is also not
able to answer.”

Critique of Pure Reason ,
Immanuel Kant, 1781.

4.1 Introduction

In this chapter, we introduce a kind of directional dependency between vari-
ables, causal dependency. Causal dependency reflects causal relation that de-
termines the generating process between variables. Instead of association de-
pendency, causal dependency is asymmetric in temporal and functional direc-
tions.

Definition 4.1.1 (Causal Dependency) Assume we have random variables
X,Y ∈ R. Causal dependency implies a stochastic process that determines
the distribution of Y := f(X) + ε, where ε is the randomness term that adds
uncertainty to the value of Y , which is independent to X . Function f(X)
represents the deterministic process between X and Y .

However, due to the confounding bias and selection bias in historical data,
estimating causal dependency from datasets is challenging. This would bring
extra uncertainty to the exceptional model mining with causal models as target
of interest. Conditional probability may give us an illusion with spurious as-
sociation between variables. Holland (1986) pointed out that if two variables
are correlated with each other, then either there is causal dependency between

69
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them, or there is (are) third part of variable(s) that confounded both of them.
Properly handling causal dependency could give us more confidence about the
exceptionalities of discovered subgroups.

Learning causal dependency from observational data greatly benefits a va-
riety of domains such as health care, education and sociology. For instance,
one could estimate the impact of a new drug to improve the survival rate. In
this chapter, we conduct causal inference with observational studies based on
the Potential Outcome framework (PO) (Rubin, 2005). The central problem
for causal effect inference in PO is dealing with the unobserved counterfac-
tuals and treatment selection bias. The state-of-the-art approaches focus on
solving these problems by balancing the treatment and control groups (Sun
and Nikolaev, 2016). However, during the learning and balancing process,
highly predictive information from the original covariate space might be lost.
In order to build more robust estimators, we tackle this information loss prob-
lem by presenting a method called Adversarial Balancing-based representation
learning for Causal Effect Inference (ABCEI), based on the recent advances in
representation learning. ABCEI uses adversarial learning to balance the distri-
butions of treatment and control group in the latent representation space, with-
out any assumption on the form of the treatment selection/assignment func-
tion. ABCEI preserves useful information for predicting causal effects under
the regularization of a mutual information estimator. The experimental results
show that ABCEI is robust against treatment selection bias, and matches/out-
performs the state-of-the-art approaches. Our experiments show promising
results on several datasets, representing different health care domains among
others.

4.2 Motivation

Many domains of science require inference of causal effects, including health-
care (Casucci et al., 2017), economics and marketing (LaLonde, 1986, Smith
and Todd, 2005), sociology (Morgan and Harding, 2006) and education (Zhao
and Heffernan, 2017). For instance, medical scientists must know whether
a new medicine is more beneficial for patients; teachers want to know if the
teaching plan can be beneficial for students; economists need to evaluate how
a policy affects the unemployment rates. Properly estimating causal effects is
an important task for machine learning research.

Conducting Randomized Controlled Trials (RCT) can be time-consuming,
expensive, or unethical (e.g. for studying the effect of smoking). Hence, ap-
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proaches for causal inference from observational data are needed. The core
issue of causal effect inference from observational data is confounding: vari-
ables might affect both intervention and treatment outcomes. For example, pa-
tients with more personal wealth are in a better position to get new medicines,
increasing the likelihood that they survive. Inferring causal effect without con-
trolling for confounders will lead to errors. Throughout this chapter, we as-
sume that all the variables in the causal system can be observed and measured,
so that the causal effects we are interested can be identifiable from the obser-
vational data (Pearl, 2009).

Under the Potential Outcome framework, people usually focus on match-
ing / balancing covariates according to confounders, e.g. based on mutual in-
formation (Sun and Nikolaev, 2016) or propensity scores (Dehejia and Wahba,
2002). Average Treatment Effect (ATE) or Average Treatment effect on the
Treated (ATT) can be properly estimated after those steps. To account for
heterogeneity in subpopulations (Pearl, 2017, Bertsimas et al., 2018), arti-
cles about Conditional Average Treatment Effects (CATE) have come out re-
cently (Shalit et al., 2017, Lu et al., 2018). CATE can be estimated by re-
gressing the difference of Individual Treatment Effects (ITEs), which cannot
be directly observed from the data, because of the unobservable counterfac-
tuals (Künzel et al., 2019). The main challenges for CATE estimation are
two-fold: on the one hand, in observational data, we only know the factual
outcome of each unit (treated or untreated), but we will never know the coun-
terfactual outcome; on the other hand, usually the distributions of covariates
in treatment and control group are unbalanced (treatment selection bias). If
we directly employ the standard supervised learning framework to learn the
treatment outcome, we will get a biased model suffering from generalization
error (Swaminathan and Joachims, 2015b).

4.3 Contributions

To overcome these challenges, we propose a unified framework to encode the
input covariates into a latent representation space, and estimate the treatment
outcomes with those representations. There are three components on top of
the encoder in our model: (1) mutual information estimation: an estimator
is specified to estimate and maximize the mutual information between repre-
sentations and covariates; (2) adversarial balancing: the encoder plays an
adversarial game with a discriminator, trying to fool the discriminator by min-
imizing the discrepancies between distributions of representations from the



72 CHAPTER 4. UNCERTAINTY IN CAUSAL DEPENDENCY

Figure 4.1: Deep neural network architecture of ABCEI for causal effect inference.

treatment and control group; (3) treatment outcome prediction: a predictor
over latent space is employed to estimate the treatment outcomes. By jointly
optimizing the three components via back propagation, we can get a robust
estimator on causal effects. The overarching architecture of our framework is
shown in Figure 4.1. As a summary, our main contributions are:

1. We propose a novel model: Adversarial Balancing-based representation
learning for Causal Effect Inference (ABCEI) with observational data.
ABCEI addresses information loss and selection bias by learning highly
informative and balanced representations in latent space.

2. A neural network encoder is constrained by a mutual information es-
timator to minimize the information loss between representations and
the input covariates, which preserves highly predictive information for
causal effect inference.

3. We employ an adversarial learning method to balance representations
between treatment and control groups, which deals with the selection
bias problem without any assumption on the form of the treatment se-
lection function, unlike, e.g., the propensity score method.

4. We conduct various experiments on synthetic and real-world datasets.
ABCEI outperforms most of the state-of-the-art methods on benchmark
datasets. We show that ABCEI is robust against different experimental
settings. By supporting mini-batch, ABCEI can be applied on large-
scale datasets.



4.4. RELATED WORK 73

4.4 Related Work

Work on causality learning falls into two categories: causal inference and
causal discovery (Mooij et al., 2016). In the branch of causal inference, three
kinds of data are used: data from Randomized Controlled Trials (RCT), ob-
servational data for which all the (potential) confounders can be observed,
and observational data with unobserved confounders. A branch of research
with RCT datasets focuses on identification of heterogeneous treatment ef-
fects. Both machine learning (Lamont et al., 2018, Taddy et al., 2016) and
optimization (Bertsimas et al., 2018) approaches are applied. Due to the diffi-
culties of obtaining RCT datasets, observational studies become an alternative.
Removing confounding is a core issue in causal inference with observational
data. Confounding bias, selection bias and missing data are three main prob-
lems for causal inference with observational data. Some research estimates
population causal effects with an instrumental variable (Bareinboim and Pearl,
2012); some research uses latent variable models to simultaneously discover
hidden confounders and estimate causal effects (Louizos et al., 2017), which is
robust against hidden confounding; some research focus on the recoverability
in the presence of selection bias (Correa et al., 2019). In this chapter, we as-
sume that all the studied variables can be measured, which satisfies the strong
ignorability assumption (Rosenbaum and Rubin, 1983).

In this branch, one of the core issues to deal with is the mismatch between
treatment and control groups. From the view of balancing, there are three
ways. The first and classical way of balancing is referred to as matching (Ho
et al., 2011): a control group is selected in order to maximize the similarity be-
tween the empirical covariate distributions in the treatment and control group.
Mahalanobis distance and propensity score matching methods are proposed
for population causal effect inference (Rubin, 2001, Diamond and Sekhon,
2013). An information theory-driven approach is proposed by using mutual
information as the similarity measure (Sun and Nikolaev, 2016). In the sec-
ond way of balancing, the Inverse Propensity Score (IPS) method is proposed
based on the variants of importance sampling (Sugiyama and Krauledat, 2007,
Jiang and Li, 2016). The IPS is used to reweigh each unit sample to learn the
counterfactuals, which is akin to counterfactual learning from logged bandit
feedback (Swaminathan and Joachims, 2015b,a). In the third way, methods
from representation learning are used to transform covariates from the original
space into a latent representation space (Li and Fu, 2017). The representations
are used as the input of predictors for individual and population causal effect
inference. One study reported on use of a single neural network with the con-
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catenation of representations and treatment variable as the input (Johansson
et al., 2016). Separate models were trained for different treatments associated
with a probabilistic integral metric to bound the generalization errors in (Shalit
et al., 2017). Hard samples to preserve local similarity during balancing pro-
cess were used in (Yao et al., 2018). Our methods are most similar to these
third-way methods. The main difference between ABCEI and the existing ap-
proaches is that except balancing, we address the information loss problem by
simultaneously estimating and maximizing the mutual information between
latent representations and the input covariates.

From the technical viewpoint, our method lies into the field of represen-
tation learning. The main aim of learning representations is to obtain useful
information from original data for downstream tasks like building predictors
or classifiers. From Principal Components Analysis (PCA) (Smith, 2002) to
autoencoders (Vincent et al., 2008), many approaches account for learning rep-
resentations. A proper way to evaluate the quality of learned representations
is to measure the reconstruction error (Kingma and Welling, 2013). Specif-
ically, reconstruction error is shown to be minimized by maximizing mutual
information between input and the learned representations when their joint
distributions for the encoder and decoder are matched (Belghazi et al., 2018).
As a consequence, maximizing mutual information minimizes the information
loss and the expected reconstruction error. We adopt this approach to regular-
ize the encoder to preserve useful information for prediction tasks. However,
in continuous and high-dimensional spaces, accurately computing MI is quite
difficult. KL-divergence (Donsker and Varadhan, 1983) and Jensen-Shannon-
divergence (JSD) (Nowozin et al., 2016) based methods are introduced for
approximating mutual information with neural networks. We follow this way
to build the neural network estimator for MI estimation.

More and more machine learning methods are employed for causal infer-
ence. For instance, Bayesian additive regression trees and Random forests
were employed to estimate causal effects in (Sparapani et al., 2016) and (Wa-
ger and Athey, 2017) respectively. Some research discusses how domain adap-
tation (Daume III and Marcu, 2006) and Generative Adversarial Networks
(GAN) (Goodfellow, 2016) can be used for causal inference by generating bal-
anced weights for unit samples (Ozery-Flato et al., 2018, Kuang et al., 2018).
Fitting a model only with observed factual data by using the GAN framework,
which is suitable for any number of treatments was proposed in (Yoon et al.,
2018). The main difference between ABCEI and those methods is that we use
adversarial learning to balance distributions of treatment group and control
group in the latent representation space.
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ABCEI does not need prior knowledge about treatment assignment. By
following the design of Wasserstein GAN (Gulrajani et al., 2017), our adver-
sarial balancing can make the encoder generate more similar distributions for
treatment and control group. Another advantage of our method is that we ac-
count for the information loss problem by using a mutual information estima-
tor to regularize the encoder. The mutual information estimator uses a neural
network to simultaneously approximate and minimize the information loss,
which persuades the encoder to learn representations preserving highly pre-
dictive information. Based on those advantages, the two components – mutual
information estimator and adversarial balancing – combined together allow us
to find the proper predictor for causal effect inference.

4.5 Methodology

4.5.1 Preliminaries

In order to properly handle treatment selection bias and counterfactuals, causal
effect estimation must solve two central problems: balancing covariates and
specifying the outcome model. Recent methods in causal inference tackle one
or both of these problems. (Yao et al., 2018) propose to use hard samples,
to preserve local similarity information from covariate space to latent repre-
sentation space. The hard sample mining process is highly dependent on the
propensity score model, which is not robust when the propensity score model
is misspecified. (Imai and Ratkovic, 2014, Ning et al., 2018) propose estima-
tors which are robust even when the propensity score model is not correctly
specified. (Kallus, 2018a,b, Ozery-Flato et al., 2018) propose to generate bal-
anced weights for data samples to minimize a selected imbalance measure in
covariate space. (Shalit et al., 2017) propose to derive upper bounds on the es-
timation error by considering both covariate balancing and potential outcomes.
Highly predictive information might be lost in the reweighing or balancing pro-
cesses of these methods.

To address these problems, we propose a framework (cf. Figure 4.1), which
generates balanced representations preserving highly predictive information in
latent space without considering propensity scores. We design a two-player
adversarial game, between an encoder that transforms covariates to latent rep-
resentations and a discriminator which distinguishes representations from con-
trol and treatment group. Unlike in the classical GAN framework, here, the
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‘true distribution’ (latent representations of the control group1) in this game
also must be generated by the encoder. On the other hand, to prevent losing
useful information during the balancing process, we use a mutual informa-
tion estimator to constrain the encoder to preserve highly predictive informa-
tion (Hjelm et al., 2018). The outcome data are also considered in this unified
framework to specify the causal effect predictor.

Problem Setup Assume an observational dataset {X,T, Y }, with covariate
matrix X ∈ Rn×k, binary treatment vector T ∈ {0, 1}n, and treatment out-
come vector Y ∈ Rn. Here, n denotes the number of observed units, and k
denotes the number of covariates in the dataset. For each unit u, we have k co-
variates x1, . . . , xk, associated with one treatment variable t ∈ {0, 1} and one
treatment outcome y. According to the Rubin-Neyman causal model (Rubin,
2005), two potential outcomes y0, y1 exist for treatments {0, 1}, respectively.
We call yt the factual outcome, denoted by yf , and y1−t the counterfactual
outcome, denoted by ycf . Assuming there is a joint distribution P (x, t, y0, y1),
we make the following assumptions:

Assumption 4.5.1 Conditioned on x, the potential outcomes y0, y1 are inde-
pendent of t, which can be stated as: (y0, y1) ⊥⊥ t|x.

Assumption 4.5.2 For all sets of covariates and for all treatments, the proba-
bility of treatment assignment will always be strictly larger than 0 and strictly
smaller than 1, which can be expressed as: 0 < P (t|x) < 1, ∀t and ∀x.

Assumption 4.5.1 indicates that all the confounders are observed, i.e., no
unmeasured confounder is present. Assumption 4.5.2 allows us to estimate
the CATE for any x in the covariate space. Under these assumptions, we can
formalize the definition of CATE (Shalit et al., 2017) for our task:

Definition 4.5.1 The Conditional Average Treatment Effect (CATE), for unit
u is: CATE(u) := E [ y1 | xu ]− E [ y0 | xu ].

We can now define the Average Treatment Effect (ATE) and the Average Treat-
ment effect on the Treated (ATT) as:

ATE := E [ CATE(u) ] ATT := E [ CATE(u) | t = 1 ] .

1our method supports representations of either treatment/control group or both as ‘true dis-
tribution’.
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Figure 4.2: MI estimator between covariates and latent representations.

Because the joint distribution P (x, t, y0, y1) is unknown, we can only try to
estimate CATE(u) from observational data. A function over the covariate
space X can be defined as f : X × {0, 1} → Y . The estimate of CATE(u)
can now be defined:

Definition 4.5.2 Given an observational dataset {X,T, Y } and a function f ,
for unit u, the estimate of CATE(u) is:

ĈATE(u) = f(xu, 1)− f(xu, 0).

In order to properly accomplish the task of CATE estimation, we need to
find an optimal function over the covariate space for both systems (t = 1 and
t = 0).

4.5.2 Neural Network Framework for Counterfactual Prediction

In order to overcome the challenges in CATE estimation, we build our model
on recent advances in representation learning. We propose to define a function
Φ : X → H, and a function Ψ : H → Y . Then we have ŶT = f(X,T ) =
Ψ(Φ(X), T ) = Ψ(h, T ). Instead of directly estimating the treatment outcome
conditioned on covariates, we firstly use an encoder to learn latent represen-
tations of covariates. We simultaneously learn latent representations and esti-
mate the treatment outcome. However, the function f would still suffer from
information loss and treatment selection bias, unless we constrain the encoder
Φ to learn balanced representations while preserving useful information.

Mutual Information Estimation Consider the information loss when trans-
forming covariates into latent space. The non-linear statistical dependencies
between variables can be acquired by mutual information (MI) (Kinney and
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Atwal, 2014). Thus we use MI between latent representations and original
covariates as a measure to account for information loss:

I(X;h) =

∫
X

∫
H
P (x, h) log

(
P (x, h)

P (x)P (h)

)
dh dx.

We denote the joint distribution between covariates and representations by PXh
and the product of marginals by PX ⊗ Ph. From the viewpoint of Shannon
information theory, mutual information can be represented as Kullback-Leibler
(KL) divergence:

I(X;h) := H(X)−H(X|h) := DKL(PXh||PX ⊗ Ph),

It is hard to compute MI in continuous and high-dimensional spaces, but one
can capture a lower bound of MI with the Donsker-Varadhan representation of
KL-divergence (Donsker and Varadhan, 1983):

Theorem 4.5.1 (Donsker-Varadhan)

DKL(PXh||PX ⊗ Ph) = sup
Ω∈C

EPXh
[Ω(x, h)]− logEPX⊗Ph

[
eΩ(x,h)

]
.

Here, C denotes the set of unconstrained functions Ω.

Proof. Given a fixed function Ω, we can define distribution G by:

dG =
eΩ(Z)dQ∫
Z e

Ω(Z)dQ

Equivalently, we have:

dG = e(Ω(Z)−S)dQ , S = logEQ
[
eΩ(Z)

]
Then by construction, we have:

EP [Ω(Z)]− logEQ
[
eΩ(Z)

]
= EP [Ω(Z)]− S

= EP
[
log

dG

dQ

]
= EP

[
log

dPdG

dQdP

]
= EP

[
log

dP

dQ
− log

dP

dG

]
= DKL(P ||Q)−DKL(P ||G)

≤ DKL(P ||Q)
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When distribution G is equal to P , this bound is tight.

Inspired by Mutual Information Neural Estimation (MINE) (Belghazi
et al., 2018), we propose to establish a neural network estimator for MI. Specif-
ically, let Ω be a function: X×H → R parametrized by a deep neural network,
we have:

I(X;h) := DKL (PXh||PX ⊗ Ph) ≥ ÎΩ(X;h)

:= EPXh
[Ω(x, h)]− logEPX⊗Ph

[
eΩ(x,h)

]
.

(4.1)

By distinguishing the joint distribution and the product of marginals, the esti-
mator Ω approximates the MI with arbitrary precision. In practice, as shown in
Figure 4.2, we concatenate the input covariates X with representations h one
by one to create positive samples (as samples from the true joint distribution).
Then, we randomly shuffle X on the batch axis to create fake input covariates
X̃ . Representations h are concatenated with fake input X̃ to create negative
samples (as samples from the product of marginals). From Equation (4.1) we
can derive the loss function for the MI estimator:

LΦΩ = −Ex∼X [Ω (x, h)] + logEx∼X̃
[
eΩ(x,h)

]
.

Information loss can be diminished by simultaneously optimizing the encoder
Φ and the MI estimator Ω to minimize LΦΩ iteratively via gradient descent.

Adversarial Balancing The representations of treatment and control groups
are denoted by h(t = 1) and h(t = 0), corresponding to the input covariate
groups X(t = 1) and X(t = 0). The discrepancy between distributions of
the treatment and control groups is an urgent problem in need of a solution.
To decrease this discrepancy, we propose an adversarial learning method to
constrain the encoder to learn treatment and control representations that are
balanced distributions. We build an adversarial game between a discriminator
D and the encoder Φ, inspired by the framework of GAN (Goodfellow et al.,
2014). In the classical GAN framework, a source of noise is mapped to a gen-
erated image by a generator. A discriminator is trained to distinguish whether
an input sample is from true or synthetic image distribution generated by the
generator. The aim of classical GAN is training a reliable discriminator to dis-
tinguish fake and real images, and using the discriminator to train a generator
to generate images by fooling the discriminator.

In our adversarial game: (1) we draw a noise vector z ∼ P (z) which has
the same length as the latent representations, where P (z) can be a spherical
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Figure 4.3: Adversarial learning structure for representation balancing.

Gaussian distribution or a Uniform distribution; (2) we separate representation
by treatment assignment, and form two distributions: Ph(t=1) and Ph(t=0); (3)
we train a discriminator D to distinguish concatenated vectors from treatment
and control group ([z, h(t = 1)] and [z, h(t = 0)]); (4) we optimize the en-
coder Φ to generate balanced representations to fool the discriminator.

According to the architecture of ABCEI, the encoder is associated with
the MI estimator Ω, treatment outcome predictor Ψ and adversarial discrimi-
nator D. This means that the training process is iteratively adjusting each of
the components. The instability of GAN training will become serious in this
context. To stabilize the training of GAN, we propose to use the framework of
Wasserstein GAN with gradient penalty (Gulrajani et al., 2017). By removing
the sigmoid layer and applying the gradient penalty to the data between the
distributions of treatment and control groups, we can find a function D which
satisfies the 1-Lipschitz inequality:∣∣∣∣D (x1

)
−D

(
x2
)∣∣∣∣ ≤ ∣∣∣∣x1 − x2

∣∣∣∣ .
We can write down the form of our adversarial game:

min
Φ

max
D

Eh∼Ph(t=0)
[D([z, h])]− Eh∼Ph(t=1)

[D([z, h])]−

β Eh∼Ppenalty

[
(||∇[z,h]D([z, h])||2 − 1)2

]
,

where Ppenalty is the distribution acquired by uniformly sampling along the
straight lines between pairs of samples from Ph(t=0) and Ph(t=1). The adver-
sarial learning process is in Figure 4.3.

This ensures the encoder Φ to be smoothly trained to generate balanced
representations. We can write down the training objective for discriminator
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and encoder, respectively:

LD =− Eh∼Ph(t=0)
[D([z, h])] + Eh∼Ph(t=1)

[D([z, h])]

+ β Eh∼Ppenalty

[
(||∇[z,h]D([z, h])||2 − 1)2

]
,

LΦ =Eh∼Ph(t=0)
[D([z, h])]− Eh∼Ph(t=1)

[D([z, h])].

Treatment Outcome Prediction The final step for CATE estimation is to
predict the treatment outcomes with learned representations. We establish a
neural network predictor, which takes latent representations and treatment as-
signments of units as the input, to conduct outcome prediction: ŷt = Ψ(h, t).
We can write down the loss function of the training objective as:

LΦΨ = E(h,t,yt)∼{h,T,YT }

[
(Ψ (h, t)− yt)2

]
+ λR(Ψ).

Here, R is a regularization on Ψ for the model complexity.

4.5.3 Learning Optimization

With respect to the architecture in Figure 4.1, we minimize LΦΩ, LΦ, and
LΦΨ, respectively, to iteratively optimize parameters in the global model. The
optimization steps are handled with the stochastic method Adam (Kingma and
Ba, 2014), training the model within Algorithm 2. Optimization details and
computational complexity analysis are given in the supplementary material.

4.5.4 Training Details

The implementation of our method is based on Python and Tensorflow (Abadi
et al., 2016). All the experiments in this chapter are conducted on a cluster
with 1x Intel Xeon E5 2.2GHz CPU, 4x Nvidia Tesla V100 GPU and 256GB
RAM.

We adopt Exponential Linear Unit (ELU) (Clevert et al., 2015) as the non-
linear activation function if there is no specification. We employ various num-
bers of fully-connected hidden layers with various sizes across networks: four
layers with size 200 for the encoder network; two layers with size 200 for the
mutual information estimator network; three layers with size 200 for the dis-
criminator network; and finally, three layers with size 100 for the predictor
network, following the structure of TARnet (Shalit et al., 2017). The gradient
penalty weight β is set to 10.0, and the regularization weight is set to 0.0001.
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Algorithm 2 ABCEI

1: Input: Observational dataset {X,T, Y }; loss function LΦΩ, LΦ and LΦΨ,
LD; Neural Networks Φ, Ω, D, Ψ; parameters ΘΦ, ΘΩ, ΘD, ΘΨ

2: repeat
3: Draw mini-batch {Xb, Tb, Yb} ⊂ {X,T, Y }
4: Compute representations h = Φ(Xb)
5: Draw fake input X̃b ∼ P̃
6: Draw noise z ∼ N (0, I)
7: Set ΘΦ, ΘΩ← Adam(LΦΩ(Xb, X̃b, h),ΘΦ,ΘΩ)
8: for i = 1 to 3 do
9: Set ΘD ← Adam(LD(h, z, Tb),ΘD)

10: end for
11: Set ΘΦ← Adam(LΦ(h, z, Tb),ΘΦ)
12: Set ΘΦ, ΘΨ← Adam(LΦΨ(h, Tb, Yb),ΘΦ,ΘΨ)
13: until convergence

In the training step, firstly we minimize LΦΩ by simultaneously optimizing
Φ and Ω with one-step gradient descent. Then the representations h are passed
to the discriminator to minimize LD by optimizing D with 3-step gradient
descent, in order to find a stable discriminator. Next, we use discriminator D
to train encoder Φ by minimizing LΦ with one-step gradient descent. Finally,
encoder Φ and predictor Ψ are optimized simultaneously by minimizing LΦΨ.

4.5.5 Hyper-parameter Optimization

Due to the reason that we cannot observe counterfactuals in observational
datasets, standard cross-validation methods are not feasible. We follow the
hyper-parameter optimization criterion in (Shalit et al., 2017), with an early
stopping with regard to the lower bound on the validation set. Detail search
space of hyper-parameter is demonstrated in Table 4.1. The optimal hyper-
parameter settings for each benchmark dataset is demonstrated in Table 4.2.

4.5.6 Computational Complexity

Assuming the size of mini-batch is n, number of epochs is m, the computa-
tional complexity of our model is O(n ∗m ∗ ((Φh − 1)Φ2

w + (Ωh − 1)Ω2
w +

(Dh − 1)D2
w + (Ψh − 1)Ψ2

w)). Here Φh,Ωh, Dh,Ψh indicates the number
of layers and Φw,Ωw, Dw,Ψw indicates number of neurons in each layer in
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Table 4.1: Search space of hyper-parameter

Hyper-parameter Range
λ 1e-3,1e-4,5e-5
β 1.0,5.0,10.0,15.0

Optimizer RMSProp, Adam
Depth of encoder layers 1, 2, 3, 4, 5, 6

Depth of discriminator layers 1, 2, 3, 4, 5, 6

Depth of predictor layers 1, 2, 3, 4, 5, 6

Dimension of encoder layers 50, 100, 200, 300, 500

Dimension of discriminator layers 50, 100, 200, 300, 500

Dimension of MI estimator layers 50, 100, 200, 300, 500

Dimension of predictor layers 50, 100, 200, 300, 500

Batch size 65, 80, 100, 200, 300, 500

Neural Network Φ,Ω, D,Ψ.

4.6 Experiments

There are two ways to validate and test the performance of causal inference
methods: the one is to use simulated or semi-simulated treatment outcomes,
e.g., dataset IHDP (Hill, 2011); the other is to use RCT datasets and add
a non-randomized component to generate imbalanced datasets, e.g., dataset
Jobs (LaLonde, 1986, Smith and Todd, 2005). We designed experiments
along both paths for evaluating our method. The four benchmark datasets
IHDP, Jobs, Twins (Louizos et al., 2017) and ACIC (Dorie et al., 2019) are
used. For IHDP, Jobs, Twins and ACIC, the experimental results are averaged
over 1000, 100, 100, 7700 train/validation/test sets respectively with split sizes
60%/30%/10%.

4.6.1 Details of Datasets

IHDP The Infant Health and Development Program (IHDP) studies the im-
pact of specialist home visits on future cognitive test scores. Covariates in
the semi-simulated dataset are collected from a real-world randomized exper-
iment. The treatment selection bias is created by removing a subset of the
treatment group. We use the setting ‘A’ in (Dorie, 2016) to simulate treatment
outcomes. This dataset includes 747 units (608 control and 139 treated) with
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Table 4.2: Optimal hyper-parameter for each benchmark dataset

Hyper-parameters
Datasets

IHDP Jobs Twins ACIC
λ 1e-4 1e-4 1e-4 1e-4
β 10.0 10.0 10.0 10.0

Optimizer Adam Adam Adam Adam
Depth of encoder layers 4 5 5 4

Depth of discriminator layers 3 3 3 3

Depth of predictor layers 3 3 3 3

Dimension of encoder layers 200 200 300 200

Dimension of discriminator layers 200 200 200 200

Dimension of MI estimator layers 200 200 200 200

Dimension of predictor layers 100 100 200 100

Batch size 65 100 300 100

25 covariates associated with each unit.

Jobs The Jobs dataset (LaLonde, 1986, Smith and Todd, 2005) studies the ef-
fect of job training on the employment status. It consists of a non-randomized
component from observational studies and a randomized component based on
the National Supported Work program. The randomized component includes
722 units (425 control and 297 treated) with seven covariates, and the non-
randomized component (PSID comparison group) includes 2490 control units.

Twins The Twins dataset is created based on the “Linked Birth / Infant Death
Cohort Data” by NBER 2. Inspired by (Almond et al., 2005), we employ a
matching algorithm to select twin births in the USA between 1989-1991. By
doing this, we get units associated with 43 covariates including education, age,
race of parents, birth place, marital status of mother, the month in which preg-
nancy prenatal care began, total number of prenatal visits and other variables
indicating demographic and health conditions. We only select twins that have
the same gender who both weigh less than 2000g. For the treatment variable,
we use t = 0 indicating the lighter twin and t = 1 indicating the heavier twin.
We take the mortality of each twin in their first year of life as the treatment
outcome, inspired by (Louizos et al., 2017). Finally, we have a dataset con-

2https://nber.org/data/linked-birth-infant-death-data-vital-statistics-data.
html

https://nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html
https://nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html
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sisting of 12,828 pairs of twins whose mortality rate is 19.02% for the lighter
twin and 16.54% for the heavier twin. Hence, we have observational treat-
ment outcomes for both treatments. In order to simulate the selection bias, we
selectively choose one of the twins to observe with regard to the covariates
associated with each unit as follows: t|x ∼ Bernoulli(σ(wTx + n)), where
wT ∼ N (0, 0.1 · I) and n ∼ N (1, 0.1).

ACIC The Atlantic Causal Inference Conference (ACIC) (Dorie et al., 2019)
is derived from real-world data with 4802 observations using 58 covariates.
There are 77 datasets which are simulated with different treatment selection
and outcome functions. Each dataset is generated with 100 random repli-
cations independently. In this benchmark, different settings like degrees of
non-linearity, treatment selection bias and magnitude of treatment outcome
are considered.

4.6.2 Evaluation Metrics

Since the ground truth CATE for the IHDP dataset is known, we can employ
Precision in Estimation of Heterogeneous Effect (PEHE) (Hill, 2011), as the
evaluation metric of CATE estimation:

εPEHE =
1

n

n∑
u=1

((E[y1|xu]− E[y0|xu])− (f(xu, 1)− f(xu, 0)))2.

Subsequently, we can evaluate the precision of ATE estimation based on esti-
mated CATE. For the Jobs dataset, because we only know parts of the ground
truth (the randomized component), we cannot evaluate the performance of ATE
estimation. Following (Shalit et al., 2017), we evaluate the precision of ATT
estimation and policy risk estimation, where

Rpol(π) = 1−[E (y1|π (xu) = 1) · P (π = 1) + E (y0|π (xu) = 0) · P (π = 0)] .

In this chapter, we consider π(xu) = 1 when f(xu, 1) − f(xu, 0) > 0. For
the Twins dataset, because we only know the observed treatment outcome for
each unit, we follow (Louizos et al., 2017) using Area Under ROC (Receiver
Operating Characteristic) Curve (AUC) as the evaluation metric. For ACIC
dataset, we follow (Ozery-Flato et al., 2018) to use RMSE ATE as performance
metric.
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4.6.3 Baseline Methods

We compare with the following baselines: least square regression using treat-
ment as a feature (OLS/LR1); separate least square regressions for each treat-
ment (OLS/LR2); balancing linear regression (BLR) and balancing neural
network (BNN) (Johansson et al., 2016); k-nearest neighbor (k-NN) (Crump
et al., 2008); Bayesian additive regression trees (BART) (Sparapani et al.,
2016); random forests (RF) (Breiman, 2001); causal forests (CF) (Wager
and Athey, 2017); treatment-agnostic representation networks (TARNet) and
counterfactual regression with Wasserstein distance (CFR-Wass) (Shalit et al.,
2017); causal effect variational autoencoders (CEVAE) (Louizos et al., 2017);
local similarity preserved individual treatment effect (SITE) (Yao et al.,
2018); MMD measure using RBF kernel (MMD-V1, MMD-V2) (Kallus,
2018b,a); Adversarial balancing with cross-validation procedure (ADV-
LR/SVM/MLP) (Ozery-Flato et al., 2018). We show the quantitative com-
parison between our method and the state-of-the-art baselines. Experimental
results (in-sample and out-of-sample) on IHDP, Jobs and Twins datasets are
reported. Specifically, we use ABCEI∗ to represent our model without the mu-
tual information estimation component, and ABCEI∗∗ to represent our model
without the adversarial learning component.

4.6.4 Results

Experimental results are shown in Tables 4.3 and 4.4. It would be unsound
to report statistical test results over the results reported in these tables; due
to varying (un-)availability of ground truth, we must resort to reporting vary-
ing evaluation measures per dataset, over which it would not be appropriate
to aggregate in a single statistical hypothesis test. However, one can see that
ABCEI performs best in ten out of twelve cases, not only by the best number
in the column, but often also by a non-overlapping empirical confidence in-
terval with that of the best competitor (cf. reported standard deviations). This
provides evidence that ABCEI is a substantial improvement over the state of
the art.

Due to the existence of treatment selection bias, regression based methods
suffer from high generalization error. Nearest neighbor based methods con-
sider unit similarity to overcome selection bias, but cannot achieve balance
globally. Recent advances in representation learning bring improvements in
causal effect estimation. Unlike CFR-Wass, BNN, and SITE, ABCEI con-
siders information loss and balancing problems. The mutual information es-
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Table 4.3: In-sample and out-of-sample results with mean and standard errors on the
IHDP and Jobs dataset (lower = better).

Methods
IHDP

In-sample Out-sample√
εPEHE εATE

√
εPEHE εATE

OLS/LR1 5.8 ± .3 .73± .04 5.8 ± .3 .94± .06
OLS/LR2 2.4 ± .1 .14± .01 2.5 ± .1 .31± .02
BLR 5.8 ± .3 .72± .04 5.8 ± .3 .93± .05
BART 2.1 ± .1 .23± .01 2.3 ± .1 .34± .02

k-NN 2.1 ± .1 .14± .01 4.1 ± .2 .79± .05
RF 4.2 ± .2 .73± .05 6.6 ± .3 .96± .06
CF 3.8 ± .2 .18± .01 3.8 ± .2 .40± .03

BNN 2.2 ± .1 .37± .03 2.1 ± .1 .42± .03
TARNet .88± .0 .26± .01 .95± .0 .28± .01
CFR-Wass .71± .0 .25± .01 .76± .0 .27± .01
CEVAE 2.7 ± .1 .34± .01 2.6 ± .1 .46± .02
SITE .69± .0 .22± .01 .75± .0 .24± .01

ABCEI∗ .74± .0 .12± .01 .78± .0 .11± .01
ABCEI∗∗ .81± .1 .18± .03 .89± .1 .16± .02
ABCEI .71± .0 .09± .01 .73± .0 .09± .01

Methods
Jobs

In-sample Out-sample
Rpol εATT Rpol εATT

OLS/LR1 .22± .0 .01± .00 .23± .0 .08± .04
OLS/LR2 .21± .0 .01± .01 .24± .0 .08± .03
BLR .22± .0 .01± .01 .25± .0 .08± .03
BART .23± .0 .02± .00 .25± .0 .08± .03

k-NN .23± .0 .02± .01 .26± .0 .13± .05
RF .23± .0 .03± .01 .28± .0 .09± .04
CF .19± .0 .03± .01 .20± .0 .07± .03

BNN .20± .0 .04± .01 .24± .0 .09± .04
TARNet .17± .0 .05± .02 .21± .0 .11± .04
CFR-Wass .17± .0 .04± .01 .21± .0 .08± .03
CEVAE .15± .0 .02± .01 .26± .1 .03± .01
SITE .17± .0 .04± .01 .21± .0 .09± .03

ABCEI∗ .14± .0 .04± .01 .18± .0 .04± .01
ABCEI∗∗ .15± .0 .05± .01 .19± .0 .04± .01
ABCEI .13± .0 .02± .01 .17± .0 .03± .01
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Table 4.4: In-sample and out-of-sample results with mean and standard errors on the
Twins dataset (AUC: higher = better, εATE : lower = better).

Methods
In-sample Out-sample

AUC εATE AUC εATE
OLS/LR1 .660± .005 .004± .003 .500± .028 .007± .006
OLS/LR2 .660± .004 .004± .003 .500± .016 .007± .006
BLR .611± .009 .006± .004 .510± .018 .033± .009
BART .506± .014 .121± .024 .500± .011 .127± .024

k-NN .609± .010 .003± .002 .492± .012 .005± .004

BNN .690± .008 .006± .003 .676± .008 .020± .007
TARNet .849± .002 .011± .002 .840± .006 .015± .002
CFR-Wass .850± .002 .011± .002 .842± .005 .028± .003
CEVAE .845± .003 .022± .002 .841± .004 .032± .003
SITE .862± .002 .016± .001 .853± .006 .020± .002

ABCEI∗ .861± .001 .005± .001 .851± .001 .006± .001
ABCEI∗∗ .855± .001 .005± .001 .849± .001 .006± .001
ABCEI .871± .001 .003± .001 .863± .001 .005± .001
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Figure 4.4: Results on ACIC datasets.

timator ensures that the encoder learns representations preserving useful in-
formation from the original covariate space. The adversarial learning com-
ponent constrains the encoder to learn balanced representations. This causes
ABCEI to achieve better performance than the baselines. We also report the
performance of our model without mutual information estimator or adversar-
ial learning, respectively, as ABCEI∗, ABCEI∗∗. From the results we can see
that performance suffers when either of these components is left out, which
demonstrates the importance of combining adversarial learning and mutual in-
formation estimation in ABCEI.

In Figure 4.4, we compare ABCEI with recent balancing methods on ACIC
benchmark. As we can see, the variance of representation learning methods are
lower than methods reweighing samples on covariate space. We also found that
the adversarial balancing methods perform better on ATE estimation. ABCEI
has the advantage of adversarial balancing as well as preserving predictive
information in latent space, which makes it outperforms the other baselines.

4.6.5 Robustness Analysis on Selection Bias

To investigate the performance of our model when varying the level of selec-
tion bias, we generate toy datasets by varying the discrepancy between the
treatment and control groups. We draw 8 000 samples with ten covariates
x ∼ N (µ0, 0.5 · (Σ + ΣT )) as control group, where Σ ∼ U((−1, 1)10×10).
Then we draw 2 000 samples from x ∼ N (µ1, 0.5·(Σ+ΣT )). By adjusting µ1,
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Figure 4.5: εPEHE on datasets with varying treatment selection bias. ABCEI is
comparatively robust.

we generate treatment groups with varying selection bias, which can be mea-
sured by KL-divergence. For the outcomes, we generate y|x ∼ (wTx + n),
where n ∼ N (02×1, 0.1 · I2×2) and w ∼ U((−1, 1)10×2).

In Figure 4.5, we can see the robustness of ABCEI, in comparison with
CFR-Wass, BART, and SITE. The reported experimental results are averaged
over 100 test sets. From the figure, we can see that with increasing KL-
divergence, our method achieves more stable performance. We do not visu-
alize standard deviations as they are negligibly small.

4.6.6 Robustness Analysis on Mutual Information Estimation

To investigate the impact of minimizing the information loss on causal effect
learning, we block the adversarial learning component and train our model on
the IHDP dataset. We record the values of the estimated MI and εPEHE in each
epoch. In Figure 4.6, we report the experimental results averaged over 1000
test sets. We can see that with increasing MI, the mean square error decreases
and reaches a stable region. But without the adversarial balancing component,
the εPEHE cannot be further lowered due to the selection bias. This result
indicates that even though the estimators benefit from highly predictive infor-
mation, they will still suffer if imbalance is ignored.
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Figure 4.6: Mutual information (MI) between representations and original covariates,
as well as εPEHE in each epoch. With increasing MI, εPEHE decreases.

4.6.7 Balancing Performance of Adversarial Learning

In Figure 4.7, we visualize the learned representations on the IHDP and Jobs
datasets using t-SNE. We can see that compared to CFR-Wass, the coverage of
the treatment group over the control group in the representation space learned
by our method is better. This showcases the degree to which adversarial bal-
ancing improves the performance of ABCEI, especially in population causal
effect (ATE, ATT) inference.

4.7 Conclusion

In this chapter, we study the modeling of causal dependency and how to cap-
ture the uncertainty in causal dependency modeling. This study could provide
us a vision on the form of model class in EMM. For instance, we can employ a
causal model in EMM to investigate whether a new drug would be exception-
ally effective or ineffective on some subgroups.

To enable such an investigation, we need to develop tools for the estima-
tion of causal effects. We propose a novel method for causal effect inference
with observational data, called ABCEI, which is built on deep representation
learning methods. ABCEI focuses on balancing latent representations from
treatment and control groups by designing a two-player adversarial game. We
use a discriminator to distinguish the representations from different groups. By
adjusting the encoder parameters, our aim is to find an encoder that can fool
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(a) IHDP.

(b) Jobs.

Figure 4.7: t-SNE visualization of treatment and control group, on the IHDP and Jobs
datasets. The blue dots are treated units, and the green dots are control units. The left
figures are the units in original covariate space, the middle figures are representations
learned by ABCEI, and the right figures are representations learned by CFR-Wass;
notice how the latter has control unit clusters unbalanced by treatment observations.

the discriminator, which ensures that the distributions of treatment and con-
trol representations are as similar as possible. Our balancing method does not
make any assumption on the form of the treatment selection function. With the
mutual information estimator, we preserve highly predictive information from
the original covariate space to latent space. Experimental results on benchmark
datasets and synthetic datasets demonstrate that ABCEI is able to achieve ro-
bust, and substantially better performance than the state of the art.



5
Uncertainty in Local Causal Dependency

“It is not that the meaning cannot be explained. But there are certain meanings
that are lost forever the moment they are explained in words.”

1Q84,
Haruki Murakami, 2009.

5.1 Introduction

In previous research, we assume that subgroups in terms of attribute variables
are highly related with the exceptional performance of the models. This is
the most important assumption for Exceptional Model Mining. Based on this
assumption, we can start to construct the search space for EMM. Most of the
previous research on EMM evaluate the contribution of each attribute variable
and its domain by empirically measuring the qualities. Heuristic or exhaustive
searching algorithms could lead us to the optimal solution. However, for the
heuristic search process, some information could be lost; for the exhaustive
search process, it is unfeasible to enumerate all the patterns on large scale
datasets. Belfodil et al. (2018) propose anytime subgroup discovery to provide
guarantees for bounding the errors of quality and show how far the quality can
be from the best. However, the search algorithm is assumed to go over all
the attribute features with the assumption that all the features are correlated to
the target of interest. Knowing the relations between attributes and targets can
help us model the dependencies between subgroups and the performance of
the models. This dependency is called Local Causal Dependency.

Definition 5.1.1 (Local Causal Dependency) Assume we have a dataset Ω ∼
P (X,Y, Z), where X,Y are sets of target variables, Z is a set of attribute
variables. Model Φ is a mapping function Φ : X → Y . A subgroup SD is

93
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defined in terms of a description language with values taking from restricted
domains D(Z). The Local Causal Dependency is a stochastic process that
determines the distribution of Y conditioning on X: P

(
Y |X, do

(
D(Z)

))
,

where do(·) is an operator that does intervention on subgroup-level. Prop-
erly capturing the uncertainty in Local Causal Dependency can leverage EMM
from the level of correlations to the level of causations. To realize such an
updating, new model classes and quality measures for modeling and compar-
ing Local Causal Dependency are needed. We introduce in this chapter how
to estimate the quantity of Local Causal Dependency and how to measure the
quality of subgroups with regard to Local Causal Dependency.

With the development of machine learning research, there is emergent re-
quirement on the explaination of decision making process rather than just the
performance of a model. In this chapter, we consider this problem as a lo-
cal pattern mining task with EMM framework. In this task, multiple output
variables depend on multiple input variables, and interestingness (model’s per-
formance is substantially different) is gauged in terms of some (to be instanti-
ated) interactions between the output variables. We call such a dependency as
Local Causal Dependency. Then we propose D-graph, a causal graph with ex-
tra nodes pointing to descriptive variables, which indicate the change of local
mechanisms, charactering the dissimilarity of statistical quantity between sub-
groups as the dissimilarity of the associated causal models. We further propose
to leverage functional constraints to compute Local Causal Dependency in the
presence of unobserved confounders and to boost the subgroup search process,
with respect to associated causal graph. To measure the difference of statistical
quantities within and without subgroups, we propose an information-theoretic
quality measure. Experiments on synthetic data show that our method outper-
forms the causality-oblivious baseline in terms of AUC, with an ROC curve
that dominates the baseline ROC curve. Also, our method scales much better
than the baseline in terms of both the number of attributes and the number of
records: handling causality with care enables Exceptional Model Mining on
larger datasets.

5.2 Motivation

With the rapid development of machine learning research, people start to focus
on uncovering the black-box of decision making process rather than only the
performance of models (Lakkaraju et al., 2017). Interpretable machine learn-
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ing research can throughly boost and improve the fairness, accountability and
transparency (Lepri et al., 2018) of models on real-world applications such
as health care (Panigutti et al., 2019) and financial policy (Chen et al., 2018b).
Most of these research try to find important features and establish a connection
between those features and the outcome of model predictions (Doshi-Velez and
Kim, 2017). Several techniques are developed to fulfill this task, e.g. Zintgraf
et al. (2017) propose to explain the decision making process of deep neural net-
works by pixel-level salient regions in the input images; Ribeiro et al. (2016)
propose to employ a surrogate model to find the relation between the rank of
feature importance and the predictive outcome; instead of using low-level input
features, Dash et al. (2018) propose to generate column based high-level fea-
tures for the explain of binary classification. Different from those methods, we
consider the decision making of a machine learning model from the view of lo-
cal pattern mining (Morik et al., 2005). Properly finding how local patterns can
influence the decision of a model is non-trivial, e.g. Kearns et al. (2017) points
out that fairness manipulating by only considering the pre-defined subgroups
may bring more biases to the decision making process. Well defined local pat-
tern mining framework such as Subgroup Discovery (Atzmueller, 2015) and
Exceptional Model Mining (Duivesteijn et al., 2016) provide us powerful tools
to tackle this task, e.g. Duivesteijn and Thaele (2014) propose to understand
where the classifier does (not) work and Grünwald and Grunwald (2007) pro-
pose to interpret the classification outcome by local patterns discovered with
Minimum Description Length (MDL). Conceptually, Caruccio et al. (2015)
formulates this task as Functional Dependencies (FD). However, there is one
main disadvantage for those methods, that is, they only consider the correlation
between features and the decision making process. Variables that are highly
associated with each other do not mean that there are causal relations between
them. The reason might be that they are confounded by the third part of vari-
ables. The state-of-the-art interpretable methods never solved this problem.
Properly solving this problem could prevent us from being misled by spuri-
ous associations between features and the decision making process, which can
leverage our research on explainable machine learning from the level of corre-
lations to the level of causations.

In this chapter, we investigate the decision making process as a statistical
quantity P (Ŷ |X), e.g. a prediction model denoting a mapping from X to Y .
We assume that a third part of variables Z are highly associated with the de-
cision making process. Subgroups are defined in terms of Z. Our aim is to
discover interesting subgroups for which the decision making process (the sta-
tistical quantity P (Ŷ |X)) is substantially different from the decision making
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(a) Causal graph G0 without hidden
confounders.

(b) Causal graph G with hidden confounders.

Figure 5.1: Causal graphs.

process on the whole dataset. This task is a standard subgroup discovery / ex-
ceptional model mining task. Previous research for this problem is oblivious
to the structural relation between variables, which could lead to the following
problems: 1) spurious association may mislead the algorithm to discover sub-
groups / patterns with false interestingness; 2) the search space indicated by
spurious association would be very large. In contrast with previous research,
we consider the causal mechanism between the third part of variables Z and
the statistical quantity P (Ŷ |X). In particular, we make contribution to current
state-of-the art in two hands: 1) on the one hand, the causal dependency we in-
vestigate is a little different from classical causal effects between two (groups
of) variables. Rather than causal quantity P (Y |do(X = x)), we consider an
intervention on the third part of variables Z and the effects on a statistical
quantity P (Ŷ |X). We call such kind of dependencies as local causal depen-
dencies on the subgroup-level. 2) On the other hand, we consider such local
causal dependencies in the presence of unobserved confounders. This would
bring more challenges for the estimate of causal quantity, e.g. in Figure 5.1a,
we show a causal graph G0 without hidden confounders: the randomness is
provided by independent unknown noises. In Figure 5.1b, the presence of un-
observed variables may bring extra constraints to the causal quantities which
cannot be captured by conditional independence. Hence, methods that can
tackle the influence of unobserved confounders are required.
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5.3 Contributions

In this chapter, we define a new intervention paradigm on subgroup-level in
terms of a third part of variables Z and then estimate the differences between
statistical quantities P (Ŷ |X) by the differences between causal graphs in sub-
groups and in the whole dataset. The model class and quality measures pro-
posed in previous research of EMM never solved this problem. Our method
can provide more insights on why and how local patterns influence the perfor-
mance of a model. The main contributions are:

• We leverage the underlying causal mechanism to model the decision
making process. This can boost local pattern mining methods like EMM,
preventing the algorithm from being misled by spurious associations.

• We define a new intervention paradigm on the subgroups, which can ex-
plain how causal dependencies between the third part of attribute vari-
ables Z influence the decision model P (Ŷ |X). We call this relation
local causal dependencies.

• We consider computing the local causal dependencies in the presence of
unobserved confounders, which can help us refine the beam search algo-
rithms for finding most interesting subgroups. This tackles the problem
that is never solved by previous research on local pattern mining.

• Experimental results on both synthetic and real-world datasets demon-
strate the effectiveness of our method quantitatively and qualitatively.

5.4 Related Work

The natural property of interesting descriptions draw a connection from LPM
to interpretable machine learning. Some focus on investigating the disadvan-
tage subgroups to analyze the fairness of network representation model con-
sidering the local structures (Du et al., 2020c); Some focus on finding reliable
functional dependencies between variables (Mandros et al., 2017). However,
the main drawback of these methods is that they might be misled by the spuri-
ous associations between variables. We tackle this problem by providing a new
intervention paradigm on local patterns which can adapt causal dependencies
to subgroup-level.

Traditional model classes in EMM (Duivesteijn et al., 2010, Lemmerich
et al., 2016) propose to measure the difference between graphs like Bayesian
networks. However the measure is observational equivalent, which cannot dis-
tinguish the difference derived from causal graphs. Unobserved confounders
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in the causal graph could bring uncertainty to the estimate of causal quanti-
ties. New constraints associated with unobserved confounders cannot be cap-
tured by conditional independence (Verma and Pearl, 1991). Some research
proposes to leverage c-components decomposition (Tian and Pearl, 2002b) to
capture such constraints; some focus on building extra variables to model such
constraints (Chen et al., 2017). In this chapter, we look for constraints in the
presence of unobserved confounders that are related with the local causal de-
pendencies, which can help us prevent the search algorithms from being misled
by spurious associations.

For the interestingness measure, domain experts may want to learn how
these patterns changing across different groups could help them to understand
why their classifiers perform differently with an interpretable answer. This can
also help to understand fairness in machine learning models (e.g. classifiers)
across different subgroups (Choi et al., 2019). Traditional quality measures
like WRAcc (van Leeuwen and Knobbe, 2011), z-score (van Leeuwen and
Knobbe, 2012), and KL-divergence (Mampaey et al., 2015) cannot be quali-
fied to measure the differences between the local causal dependencies. The
quality measure used in this chapter is built on information theory (Janzing
et al., 2019) considering the mean distance of feature vectors in Reproducing
Kernel Hilbert Space (RKHS) (Smola et al., 2007). This allows us to mea-
sure the difference between conditional distributions using Integral Probabil-
ity Metric (IPM) (Sriperumbudur et al., 2010). By considering the autonomous
mechanism of causal structure, we show shat the independence relation appear
in the quality scores, following (Janzing et al., 2019). On the other hand, we
leverage functional constraints to decompose the quantity of interest, so that
we can compute the statistical quantity by only reweighing the quantity with
constraints that are changed in the subgroups. This can throughly improve the
running speed of our algorithm.

5.5 Methodology

5.5.1 Preliminaries

Assume a set of descriptive variables Z = {z1, · · · , zk} and two sets of target
variables X = {x1, · · · , x`}, Y = {y1, · · · , ym}. The observational dataset
Ω is drawn from a distribution P (Ω). For a given sample Ω, we have P (V ) =
P (Z,X, Y ) consisting of a bag of N records ri = (Zi, Xi, Y i). By assuming
that values of Z are taken from an unrestricted domain A, we can define a
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function D : A → {0, 1}. A description D covers a record ri if and only if
D(zi1, · · · , zik) = 1.

Structural Causal Model We use the Structural Causal Model
(SCM) (Pearl, 2009) as the tool to model the decision making process
regarding to the underlying causal mechanism that determines the distribution
P (Z,X, Ŷ ):

Definition 5.5.1 (Structural Causal Model) (Pearl, 2009) A structural
causal model M is represented by a 4-tuple 〈V,U,F , P (U)〉 where:

1. U is a set of exogenous (unobserved) variables of any types including
continuous, discrete, or mixed;

2. V is a set of endogenous (observed) variables;
3. F is a set of functions F = {fi} mapping from V ∪ U to V. For each

endogenous variable Vi ∈ V , there is a function fi ∈ F mapping from
Pai ∪ Ui to Vi, where Pai ⊆ (V \Vi) stands for direct parents of Vi
in the causal graph, and Ui ⊆ U stands for sources of randomness that
determine Vi;

4. P (U) is a joint distribution over exogenous variables U , encoding the
randomness.

In this chapter, we do not make any assumption about the functional type of
each fi ∈ F . We consider non-parametric causal relations between variables.
A causal model M is associated with a causal graph G over the set of nodes V
and U . We define Pa(X)G , Ch(X)G , An(X)G , De(X)G as the union in G of
X ⊆ V with their parents, children, ancestors, and descendants, respectively.
Each directed edge represents dependencies between variables and their par-
ents, quantifying the conditional probabilities P (vi|pai, ui), which implies an
important property for SCM: the local autonomous mechanism (Peters et al.,
2017). This property allows us to decompose the joint distribution P (V ) into:

P (V ) =
∑
u

∏
{i|Vi∈V }

P (vi|pavi , ui)
∏

{i|Ui∈U}

P (ui|paui),

where the summation considers all the possibilities of unobserved vari-
ables. If there are no unobserved confounders for each observed node Vi ∈ V ,
the causal model satisfies the Markovian property (cf. Figure 5.1a). While real
applications might include unobserved confounders (cf. Figure 5.1b), which is
why we call these types of model non-Markovian causal models.
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(a) D-graph G∗D1
associated with D1 :

d(z2) = {1, 2, 3}^ d(z4) = {2, 3}.
(b) D-graph G∗D2

associated with D2 :
d(z4) = {2, 3}.

Figure 5.2: Description-enhanced causal graphs.

5.5.2 Why Does the Model Perform Differently?

We assume that according to the domain knowledge, for each given dataset
Ω ∼ P (X,Y, Z), we have a causal graph G that depicts the underlying deci-
sion making process (w.r.t prediction mapping Φ) with causal model M , gen-
erating the distribution P (X, Ŷ , Z). For each subgroup SD defined in terms
of attributable variable Z, we can define a potentially different causal model
MD represented by graph G∗D, where extra edgesD(Zi) represent that the local
mechanism in the subgroup is different with the whole data. The links between
D nodes and the observed nodes in G∗D represent additional restrictions on the
distributions of variables. We call this type of graph D-graph. Formally, we
have the following definition:

Definition 5.5.2 (D-graph) For any description D = ^{i|zi∈Z}d(zi), ∀zi ∈
Ch(D), we have

p∗(zi|pazi , uzi) =

{
pd(zi)(zi|pazi , uzi) if zi ∈ d(zi),

0 if zi /∈ d(zi),

where d(zi) denotes the restricted domains of zi, if d(zi) = A; and pd(zi)

represents the renormalized distribution regarding to values in the associated
domain. Under this definition, the joint distribution PMD

(V ) from the causal
model MD associated with the D-graph G∗D can be decomposed by replacing
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restricted components:

PMD
(V ) =

∑
u

∏
{i|Vi /∈Ch(D)}

p(vi|pavi , ui)∏
{j|Vj∈Ch(D)}

p∗(vj |pavj , uj) p(u),
(5.1)

This decomposition implies that by substituting the equations in M , The
D nodes modify the original causal model denoted by MD. In Figure 5.2 we
give two examples for D-graphs, where local patterns representing by D nodes
point to associated observed nodes in the original graph. In Figure 5.2a, the
domains of z2 and z4 are restricted to {1, 2, 3} and {2, 3}. Domains of other
attributable variables are kept unrestricted. For instance, G∗D1

in Figure 5.2a
indicates that PMD1

(z2|z1) 6= PM (z2|z1) and PMD1
(z4) 6= PM (z4). In order

to know how interesting the differences between quantity of interest are, we
need to define a quality measure, e.g. a function ϕ

(
PM (Ŷ |X) ||PMD

(Ŷ |X)
)

The EMM considering Local Causal Dependency can be reformulated as:

Problem 5.5.1 Given a dataset Ω, a mapping function Φ : X → Y , a quality
measure function ϕ(·||·), a causal graph G and its associated causal model M ,
we aim to find a sequence of Q descriptions h = {D1, · · · , DQ}, such that
∀D′ ∈ D \ h, ϕ

(
PM (Ŷ |X) ||PMD′ (Ŷ |X)

)
< ϕ

(
PM (Ŷ |X) ||PMD

(Ŷ |X)
)
,

∀D ∈ h.

By defining D-graph, we build a connection between local pattern and the
quantity of interest in causal graph language. We call it Local Causal De-
pendency. The D-nodes indicate why and how quantity of interest might be
different within and without subgroups (cf. equation 5.1).

Local Causal Dependency in Graph Language Example 1 shows a problem
that tradition EMM would have by ignoring the underlying mechanism. In this
section, we introduce how to tack this problem by graph language. We assume
the causal graph G associating with data generating mechanism in Figure 5.3.
From G we can see that variable Z3 can influence Ŷ through X , but it is not a
direct cause of Ŷ . This indicates that there is correlation between Z3 and quan-
tity P (Ŷ |X) from observation, but if we do intervention on Z3, the quantity
will not change. We explain why we reach this conclusion.
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Figure 5.3: Causal graphs G of National Supported Work program.

Definition 5.5.3 (Equivalent Description) Two descriptions Di and Dj are
called equivalent relative to P (Ŷ |X) if Ch(Di) ⊂ Ch(Dj) and
PMDi

(Ŷ |X) = PMDj
(Ŷ |X), with regard to D-graphs G∗Di

and G∗Dj
.

Definition 5.5.4 (Minimal Description) A description D is called minimal
relative to P (Ŷ |X) if there is no Ch(D′) ⊂ Ch(D) such that for each causal
model M associated with causal graph G, PMD′ (Ŷ |X) = PMD

(Ŷ |X).

Definitions 5.5.3 and 5.5.4 jointly provide two levels of meanings: on the one
hand, we can simplify a given description by looking for its minimality. This
can prevent us from redundantly refining the descriptions, e.g., exploring the
attributable spaces which are independent with the quantity of interests. On the
other hand, we can measure the interestingness of descriptions considering not
only the computed quantity of interests, but also structural relations retrieved
from the causal graph.

One common method to generate a minimal description is using d-
separation, conditioning on X , looking for variables that are independent with
Ŷ . In the presence of unobserved confounders, some constraints cannot cap-
tured only by conditional independence (Verma and Pearl, 1991). Some re-
search (Tian and Pearl, 2002b, Chen et al., 2017) propose systematic methods
to find such constraints, functional constraint. In this chapter, we employ func-
tional constraints to help us find minimal descriptions. In order to systemically
find minimal descriptions, we need to recursively partition the observed vari-
ables (V ) into groups by applying the confounded-component (c-component)
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decomposition (Tian and Pearl, 2002a):

P (V ) =
∏
j

∑
uj

∏
{i|Vi∈Cj}

P (vi|pai, ui)P (uj).

By this definition, in the causal graph GV , any two nodes in the same c-
component may be confounded by unobservables. For instance, in Figure 5.3,
the nodes can be partitioned by c-components as {Z3, X}, {Z1}, {Z2}, {Ŷ }.
Without loss of generality, we start from this example to show how to generate
functional constraints for the quantity of interest using c-component decom-
position. At first we can derive the joint distribution of Ŷ , X as:

P (Ŷ , X) =
∑

z1,z2,z3

P (V ) =
∑

z1,z2,z3

R(Z3, X)R(Z1)R(Z2)R(Ŷ )

=
∑

z1,z2,z3

P (ŷ|x, z1, z2)P (z1)P (z2)
∑
u1

P (x, z3|u1)P (u1)

=
∑

z1,z2,z3

P (ŷ|x, z1, z2)P (z1)P (z2)
∑
u1

P (x|z3, u1)P (z3|u1)P (u1)

=
∑
z1,z2

P (ŷ|x, z1, z2)P (z1)P (z2)
∑
u1,z3

P (x|z3, u1)P (z3|u1)P (u1),

such that the quantity of interest can be computed as:

P (Ŷ |X) =∑
z1,z2

P (ŷ|x, z1, z2)P (z1)P (z2)
∑

u1,z3
P (x|z3, u1)P (z3|u1)P (u1)∑

z1,z2,z3,y
P (V )

=∑
z1,z2

P (ŷ|x, z1, z2)P (z1)P (z2)
∑

u1,z3
P (x|z3, u1)P (z3|u1)P (u1)∑

z1,z2,ŷ
P (ŷ|x, z1, z2)P (z1)P (z2)

∑
u1,z3

P (x|z3, u1)P (z3|u1)P (u1)
=∑

z1,z2

P (ŷ|x, z1, z2)P (z1)P (z2),

which implies that P (Ŷ |X) is the functional of Z1, Z2. This functional con-
straint is consistent with the assumed model in Example 1. Here, two main
properties of c-component decomposition are applied. First, we can decom-
pose the joint distribution into product of conditional distributions of each
c-component; on the other hand, each c-component is only dependent on its
non-descendant variables in the c-component and effective parents of its non-
descendant variables in the c-component (Tian and Pearl, 2002b). Inspired
by those properties, we can derive the following theorem for computing the
quantity of interest with c-components:
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Theorem 5.5.1 (functional constraint set (FCS)) Let X, Ŷ ⊆ V be disjoint
sets of variables. Let W = An(X ∪ Ŷ )G be partitioned into c-components
C(W ) = {C1(W1), · · · , CJ(WJ)} in causal graph G[An(X∪Ŷ )]. Then the

quantity of interest P (Ŷ |X) is the function of W ′ =
⋃
hCh(Wh) \ X ⊆

W \X , if and only if

∀Ch(Wh) ∈ C(W ), An+(Ŷ )G[An(X∪Ŷ )]X
∩ Ch(Wh) 6= ∅,

where An+(Y )G[An(X∪Ŷ )]X
represents the ancestor set of Ŷ including Ŷ , in

graph G[An(X∪Ŷ )]X , the subgraph G[An(X∪Ŷ )] removing all out edges relative
to X .

Proof. According to Bayes equation, we have P (Y |X) = P (X,Y )
P (X) . By c-

component decomposition (Tian and Pearl, 2002a), P (X,Y ) can be decom-
posed into: ∑

z\z′
R(X \X ′, Z \ Z ′)R(Y )

∑
z′

R(X ′). (5.2)

P (X) can be decomposed into∑
y,z\z′

R(X \X ′, Z \ Z ′)R(Y )
∑
z′

R(X ′), (5.3)

where R(X \ X ′, Z \ Z ′) share nodes with An+(Y )G[An(X∪Ŷ )]X
. Accord-

ing to (Tian and Pearl, 2002b, Lemma 2),
∑

z′ R(X ′) is not a function of Y ,
so that it can be removed by divide operator. Hence we have P (Y |X) =∑

z\z′ R(X\X′,Z\Z′)R(Y )∑
y,z\z′ R(X\X′,Z\Z′) , such that z \ z′ denote the functional constraints,

which are the intersections of c-components with Ancestor in the causal graph
G[An(X∪Y )]X .

Theorem 5.5.1 implies that even if a variable is not the ancestor of pre-
diction variable Ŷ , it can also affect the quantity of interest P (Ŷ |X). In the
following, we give a more general example to show this property:

Example 2 Figure 5.4 shows a causal graph G and its disconnected sub-
graphs in GV , from which we can have the c-components {X1, Z1, Z2}, {Ŷ }
and {X2, Z3} (cf. Figure 5.4b). By c-components decomposition, we have:
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P (X, Ŷ ) =
∑

z1,z2,z3

R(X1, Z1, Z2)R(Ŷ )R(X2, Z3)

=
∑
z1,z2

R(X1, Z1, Z2)R(Ŷ )
∑
z3

R(X2, Z3),

P (X) =
∑

z1,z2,z3,ŷ

R(X1, Z1, Z2)R(Ŷ )R(X2, Z3)

=
∑
z1,z2,ŷ

R(Ŷ )R(X1, Z1, Z2)
∑
z3

R(X2, Z3),

P (Ŷ |X) =

∑
z1,z2

P (ŷ|z2, x1, x2)R(X1, Z1, Z2)∑
z1,z2,ŷ

P (ŷ|z2, x1, x2)R(X1, Z1, Z2)

=

∑
z1,z2

P (ŷ|z2, x1, x2)R(X1, Z1, Z2)∑
z1,u1

P (x1|u1, z1)P (z1|u1)P (u1)

=

∑
z1,z2

P (ŷ|z2, x1, x2)R(X1, Z1, Z2)∑
z1
P (x1|z1)P (z1)

=

∑
z1,z2

P (ŷ|z2, x1, x2)P (x1|z1, z2)P (z1|z2)P (z2)∑
z1
P (x1|z1)P (z1)

=
∑
z2

P (ŷ|z2, x1, x2)P (z2)

∑
z1
P (x1|z1)P (z1|z2)∑
z1
P (x1|z1)P (z1)

(5.4)

where

R(X2, Z3) =
∑
u3

P (x2|z3, u3)P (z3|u3)P (u3),

R(X1, Z1, Z2) =
∑
u1,u2

P (x1|u1, z1)P (z1|u1, u2)P (z2|u2)P (u1)P (u2).

The presence of hidden confounder indicates Z1 6⊥⊥ Z2|U2, which would
not allow Equation (5.4) to be reduced further. In Figure 5.4a, we have
An+(Ŷ )G[An(X∪Ŷ )]X

= {Z2, Ŷ }. According to Theorem 5.5.1, {X1, Z1, Z2}
is the only c-component to construct functional constraint set, because
{X1, Z1, Z2} ∩ {Z2, Ŷ } = {Z2}. This implies that the quantity of interest
is the function of Z1 and Z2, which is consistent with the results in Equa-
tion (5.4). Now we can derive an important property for minimal description:
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(a) G (b) GV

Figure 5.4: Causal Graphs.

Corollary 5.5.1 (Minimality) D is a minimal description satisfying minimal-
ity for D-graph G∗D if and only if Ch(D) ⊆W ′.

Corollary 5.5.1 implies that we can validate whether a description is a min-
imal description only by graph criterion, without computing the quantity of
interest for each candidate subgroup.

5.5.3 Information Theoretic Quality Measure

The quality measure in this chapter is proposed based on measuring the
differences between quantity of interest PM (Ŷ |X) in the whole data and
PMD

(Ŷ |X) in the subgroup in terms of description D. Considering the
complexity of P (Ŷ |X), we propose to use Integral Probability Metric
(IPM) (Müller, 1997) to quantify the dissimilarity between conditional dis-
tributions:

ϕΘ(P||Q) = sup
ϑ∈Θ

∣∣∣EP[ϑ|X]− EQ[ϑ|X]
∣∣∣,

where P,Q ∈ P , P is the set of all Borel probability measures on (X ×Y,A),
and Θ is a class of bounded real-valued measurable functions on Y . Follow-
ing (Gretton et al., 2007, Smola et al., 2007, Sriperumbudur et al., 2010), we
choose to use Θ in a Reproducing Kernel Hilbert Space (RKHS) H with k as
reproducing kernel, such that:

ϕΘ(P||Q) =
∣∣∣∣∣∣∑

ŷ,x

k(·, ŷ)PM (ŷ|x)−
∑
ŷ,x

k(·, ŷ)PMD
(ŷ|x)

∣∣∣∣∣∣
H
,

where k(·, ŷ) = φ(ŷ) is a feature map from Y to H. Now we can quantify the
exceptionality of the target quantities in subgroups using this distance measure
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on probability distributions. A quality measure based on information theoretic
exceptionalities can be defined as:

Definition 5.5.5 (Information Theoretic Exceptionality) Let Y be a ran-
dom variable in dataset Ω, we can have conditional distribution of the pre-
dictive variable Ŷ , PM (Ŷ |X) with regard to a decision model M . Assume
Ω is sampled from P (Ω), then we can have another conditional distribution
P ′M (Ŷ |X) sampled from P (PM (Ŷ |X)). For a given subgroup in terms of
description D, we have a distribution PMD

(Ŷ |X). We can define a distance
measure ϕ : X × Y ×D → R+

0 , such that:

P{ϕ
(
PM (Ŷ |X)||P ′M (Ŷ |X)

)
≥ ϕ

(
PM (Ŷ |X)||PMD

(Ŷ |X)
)
} =

e−ϕ
(
PM (Ŷ |X)||PMD

(Ŷ |X)
)
,

where ϕ needs to be a surjective function. For simplicity of representation, we
let ϕ

(
PM (Ŷ |X)||PMD

(Ŷ |X)
)

= ϕŶ |X(D) and ϕ
(
PM (Ŷ |X)||P ′M (Ŷ |X)

)
=

ϕŶ |X(Ω).

This definition follows the formulation of hypothesis testing. By the definition,
PM (Ŷ |X) and P ′M (Ŷ |X) are drawn from same distribution, the cumulative
probability P{ϕŶ |X(Ω) ≤ ϕŶ |X(D)} = 1 − e

−ϕŶ |X(D) would be close to
1, if ϕŶ |X(D) is extremely higher than expected, which implies that we can
reject the hypothesis “PD

Ŷ |X and PŶ |X are drawn from the same distribution”.
The distance measure can be represented as:

ϕŶ |X(D) = − logP{ϕŶ |X(Ω) ≥ ϕŶ |X(D)},

where D and Ω share the same support in the space of probability distribution
PY|X . Specifically, we can define ϕŶ |X(D) = − logP (PD

Ŷ |X), such that we
have:

ϕŶ |X(D) = − logP{P (PŶ |X) ≤ P (PD
Ŷ |X)}.

Here we define the exceptionality in terms of conditional distribution, fol-
lowing (Janzing et al., 2019), we have the following Lemma:

Lemma 5.5.1 (Exceptionality Independence) If ϕŶ |X=x is a surjective In-
formation Theoretic Exceptionality score with regard to conditional distribu-
tion PŶ |X , then ϕŶ |X ⊥⊥ X .
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This lemma implies that for all x ∈ X , ϕŶ |X=x has the same density. Now
we can introduce how to leverage functional constraints from the causal model
to compute quality measure for subgroups. Theorem 5.5.1, and Corollary 5.5.1
imply that each quantity of interest P (Ŷ |X = xi) can be represented as the
form:

P (Ŷ |X) =
∏
{yi∈Y }

∑
z,z′

P (yi|xi, z)P (z)Q(z′), (5.5)

where z represents a set of variables which are parents of Ŷi, z′ represents
variables which are parents of X , and there exists a hidden confounder be-
tween them and ancestors of Ŷi. P (z) can be represented as the prod-
ucts of distributions

∏
j P (zj), and Q(z′) can be represented as the form of∑

z′ P (Xi|z′)P (z′|z)∑
z′ P (Xi|z′)P (z′) . For each dataset Ω = (X,Y, Z)n and associated graph G,

we can learn a mapping function P (Ŷ |X, paŶ ) and compute PM (Ŷ |X) by av-
eraging over P (Z). For each given subgroup D, we can compute PMD

(Ŷ |X)
by replacing z ∈ Ch(D)G∗D with P ∗(z), with regard to associated D-graph.
Equation (5.5) also implies that, whenever there is a D-node pointing to z′,
P (z′|z) = P (z′), because the local mechanism for generating z′ has changed.
Hence, we can always compute P (Ŷ |X) by using P ∗(z). For evaluation, we
can draw m samples from PM (Ŷ |X = x) and n samples from PMD

(Ŷ |X),
such that we can empirically estimate ϕY |X(D) using maximum mean dis-
crepancy (MMD), inspired by (Gretton et al., 2012):

MMD2
u[Θ, PM (Ŷ |X), PMD

(Ŷ |X)] =

1

m(m− 1)

m∑
i=1

m∑
j 6=i

ϑ(ŷi, ŷj)+

1

n(n− 1)

n∑
i=1

n∑
j 6=i

ϑ(ŷDi , ŷ
D
j )− 2

mn

m∑
i=1

n∑
j=1

ϑ(ŷi, ŷ
D
j ),

which is a sum of two U-statistics and a sample average. Note that for each
dataset we feed {x} in the whole dataset and subgroup, respectively, to get the
predicted results {ŷ} and {ŷD}.

By jointly applying Theorem 5.5.1, Corollary 5.5.1, we propose an algo-
rithm 3 extended from (Duivesteijn et al., 2016, Algorithm 1) for finding top-Q
exceptional subgroups.
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Algorithm 3 Causality-aware beam search for top-Q exceptional model min-
ing.
Input: Dataset Ω, Graph G, Quality Measure ϕ, Refinement Operator η, Inte-

ger w, d, Q, c-components decomposition operator ψ
Output: PriorityQueue resultSet

1: function SABS(Ω, ϕ, η, w,d, Q, W ′=FCS(Ω, G, ψ))
2: candidateQueue← new Queue;
3: candidateQueue.enqueue({});
4: resultSet← new PriorityQueue(Q);
5: while level ≤ d do
6: beam← new PriorityQueue(w);
7: while candidateQueue 6= ∅ do
8: seed← candidateQueue.dequeue();
9: set← η(seed);

10: for all D ∈ set do
11: if Ch(D)G∗D ⊆W

′ then
12: quality← ϕ(Ch(D)G∗D);
13: resultSet.insert with priority(D, quality);
14: beam.insert with priority(D, quality);
15: end if
16: end for
17: end while
18: while beam 6= ∅ do
19: candidateQueue.enqueue(beam.get from element());
20: end while
21: end while
22: return resultSet;
23: end function
24:

25: function FCS(Ω,G, ψ)
26: W ′ ← {};
27: W ← An(X ∪ Ŷ )G ;
28: C1(W1), · · · , CJ(WJ)← ψ(G[An(X∪Ŷ )]);
29: for h = 1 to J do
30: if Ch(Wh) ∩An+(Ŷ )G[An(X∪Ŷ )]X

6= ∅ then
31: W ′ ←W ′ ∪ Ch(Wh) \X;
32: end if
33: end for
34: return W ′;
35: end function
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5.6 Experiments

In this section, we design various experiments in order to validate our method
against the following questions:

RQ1 Comparing to quality measures that ignore the structural relations be-
tween variables, can our method reliably find the injected exceptional subgroup
in synthetic dataset?

RQ2 Comparing to search algorithms that ignore the structural relations be-
tween variables, can our method improve the time efficiency?

RQ3 For real-world datasets in which the ground truth is unknown, can our
algorithm effectively discovery exceptional subgroups?

Synthetic Dataset For the synthetic dataset, we propose to generate the data
by the following steps: 1) we initialize nodes {x1, . . . , x`}, {y1, . . . , ym},
{z1, . . . , zk} with control parameters `,m, k. For each node, the number i
of parents is sampled with probability decaying inverse proportional to i. For
each y, x, z, we sample parents from X and Z. For each pair of variables in
(x, z), (z, z) and (y, z) we sample a hidden confounder following Bernoulli
distribution with parameter α. By these steps, we can randomly draw causal
graphs for which the quantity PMD

(Ŷ |X) can always be computable with D-
graph. 2) Given a sampled causal graph, we propose to generate the data using
functional causal model (Hoyer et al., 2009). For each variable v, we samples
values of v following the equation:

v = f(Pav) + εv,

where f denotes the deterministic function and εv denotes the randomness.
There are two kinds of equations attached to causal links between variables in
X∪Z. The one is linear regression with parameters drawing from uniform dis-
tribution U(−3, 3), and the other is non-linear neural networks with parame-
ters drawing from uniform distribution U(−3, 3) and neuron numbers drawing
randomly from {2, · · · , 100}. For the non-linear function we use Relu, follow-
ing (Nair and Hinton, 2010). For the causal model from X to Y , we choose
equations according the values of pa(Ŷ . We modularize the values of pa(Ŷ
into several blocks: with 80% probability, we choose f(x) = e−x

2
, and with
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(a) G (b) GX

Figure 5.5: Causal Graphs.

20% probability, we choose f(x) = 1
1+e−x . Each value of Z is mapped into

discrete space for the convenience of computation, even though our method
supports continuous variables too. By doing this, we can create strongly non-
linear mechanisms for generating the datasets. At the same time, we can inject
ground-truth subgroups that have an exceptionally different generating mech-
anism compared with the other parts of the data.

Real-world Dataset For the real-world dataset, we use the Adult dataset
from the UCI Machine Learning Repository (Dua and Graff, 2017). The
dataset consists of 65,123 records with 14 attributes such as education, age
etcetera. We choose 7 attributes and map values of Z into discrete space. For
the Adult dataset, we cannot know the ground truth of data generation process.
The causal graph is generated by applying the PC algorithm in Tetrad (Gly-
mour and Scheines, 1986). For the generated causal graph, we choose Marital-
status and Age as hidden confounders U1 and U2. Other attributes are repre-
sented as Education: Z2, Sex: Z1, Occupation: X2, Hours: X1. The associated
causal graph is shown in Figure 5.5.

Baseline For experiments on both synthetic and real-world datasets, we com-
pare our method with the method that is oblivious to causal structures. For the
subgroup search process, we use (Duivesteijn et al., 2016, Algorithm 1). For
the model class, we train a SVM model for each subgroup to learn the map-
ping function PMD

(Ŷ |X). For quality, we directly compare the performances
of trained SVM models in subgroup and the whole data by computing the mean
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differences of predicted samples. We call this baseline NEMM, distinguishing
with our method SEMM.

5.6.1 Experiments on Synthetic Dataset

For the experiments on synthetic data, we randomly sample 100 graphs and
generate 100 datasets with equations following the above instructions. We
are curious to learn whether our method finds injected exceptional subgroups,
and how it performs comparing with the baseline. We run the algorithm to
discover the most exceptional subgroups. Averaging results of ROC curve and
AUC with standard errors, are reported in Figure 5.6a and Figure 5.7. We
notice that our algorithm can reliably find the exceptional subgroups when
Q = 5 and Q = 10, outperforming the baseline method that is oblivious to the
causal structures. Baseline methods may discover subgroups with redundant
descriptions, for which the attributes are independent of target quantities. We
also notice that with the increasing Q, AUC decreased. The reason might be
that with the increase of Q, subgroups with lower quality score came in, which
may contain false discoveries.

In order to evaluate the efficiency of our methods against the number of
attributesK and the number of recordsN , we fix other parameters and varyK
andN respectively. By doing this, we generate 10 graphs and datasets for each
K andN and report the average runtime with standard errors in Figure 5.8. We
can see that the runtime for algorithm that ignores the functional constraints
increases nearly exponentially with the increase of K and N . The reasons are
two-fold: on the one hand, the spurious associations may cost the algorithm
more time doing redundant search; on the other hand, with the increase of N ,
training time for the model in each subgroup would increase. Conversely, our
algorithm does not need to train the model from scratch in subgroups, which
leads to increased efficiency.

5.6.2 Experiments on Real-world Dataset

For the real-world dataset, we do not know the ground-truth subgroups. We
propose to measure the difference between P (Ŷ |X) in the space R instead of
mapping values into label space. We propose to report the discoveries with
p-values by the following method. For each quality score ϕ(D), we can com-
pute its p-value with the following steps: we assume that PŶ |X and PD

Ŷ |X come

from the same distribution P (PŶ |X) with regard to P (Ω). Then, empirically,
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(a) Q=5 (b) Q=10

Figure 5.6: ROC curves for various setting of Q.

Figure 5.7: Area under ROC curve for various setting of Q.

we combine samples {ŷ}, {ŷD} and randomly shuffle them by replacing el-
ements between two sample sets. We can compute the new MMD2

u with the
shuffled data. We repeat this ten thousand times. By doing so, we can formu-
late a null distribution of quality scores and get the p-value for ϕ(D). If ϕ(D)
is so large as to be outside the 1-β quantile of the null distribution, we can reject
the null hypothesis. This means we are confident that the quantity PMD

(Ŷ |X)
in subgroup D is significantly different with the quantity PM (Ŷ |X) in the
whole dataset. The top-5 exceptional subgroups are reported in Table 5.1.
The reported p-values tell us that we can be confident about the exceptionality
scores.
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(a) with respect to K. (b) with respect to N.

Figure 5.8: Runtime sensitivity with respect to various parameters.

Table 5.1: Experiments on real-world datasets. Higher ϕŶ |X(D) means more excep-
tional.

D ϕŶ |X(D) |D|
N p-value

Assoc-acdm ^ Female 4.19 · 10−09 .02 0.0004
11th 3.57 · 10−09 .04 0.0026
Assoc-voc 3.29 · 10−09 .05 0.0034
Bachelors ^ Female 2.57 · 10−09 .05 0.0131
HS-grad ^ Male 1.81 · 10−09 .21 0.0358

5.7 Conclusion

In this chapter, we study a general problem: how to find the most exceptional
subgroups w.r.t differences between statistical quantity P (Ŷ |X) in the whole
data and in the subgroups. We argue that exceptional model mining / sub-
group discovery should consider the underlying data generation mechanism.
We propose D-graph, a causal graph with extra nodes pointing to descriptive
variables, which indicate the change of local mechanisms. We further pro-
pose to find and leverage functional constraints to boost the subgroup search
process, w.r.t associated causal graph. We propose an information theoretic
quality measure, to estimate the difference between P (Ŷ |X).

Experiments on synthetic and real-world datasets are conducted to evaluate
whether our method can discover exceptional subgroups reliably, effectively
and efficiently. The experiment results show that our methods can significantly
outperform the baseline which ignores causal mechanism. On synthetic data,
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our method outperforms the causality-oblivious baseline in terms of AUC over
a range of top-Q EMM tasks with varying Q (cf. Figure 5.7). Moreover, the
outperformance goes beyond simple AUC measurements: as Figure 5.6 dis-
plays: the entire ROC curve for our method dominates the ROC curve for the
baseline, i.e., for any choice of False Positive Rate (FPR), our method has a
True Positive Rate (TPR) that is either equally good as or better than the base-
line. An added benefit is provided in terms of runtime: taking causality into
account during the search process, and restricting the search to descriptions
that satisfy Minimality (cf. Corollary 5.5.1), ensures that the runtime is much
less sensitive to parameters K, and N (cf. Figure 5.8; notice that the y-axis
is in logspace): especially with respect to K, the number of attributes in the
graph, the baseline shows an exponential increase in runtime while the run-
time curve for our algorithm flattens off in logspace. Additional experiments
on real-world data (cf. Table 5.1) illustrate that our method can find statisti-
cally significantly exceptional causal subgroups, where significance is derived
from a permutation test.





6
Conclusion

“Mathematics needs both birds and frogs. Mathematics is rich and beautiful,
because birds give it broad visions and frogs give it intricate details. Mathe-
matics is both great art and important science, because it combines generality
of concepts with depth of structures.”

Birds and Frogs,
Freeman Dyson, 2009.

In this dissertation, we studied the problem of uncertainty in Exceptional
Model Mining. EMM is a powerful data mining framework that allows us to
discover cohesive subsets from the whole dataset, in which the interactive pat-
terns between target variables are exceptional, compared with those interactive
patterns in the whole dataset. Because of the interpretable descriptions asso-
ciated with the subgroups, the EMM framework can provide additional values
for the study of fairness and explainable methods. However, all these appli-
cations have to be built upon knowing the reliability of the discoveries. This
requires the study of uncertainty in EMM.

We investigated the uncertainty in EMM by studying the underlying mech-
anisms that determine the exceptionality score of each subgroup. The general
process of computing the exceptionality score consists of the following steps:
for a given description language and a dataset at hand, we can formulate sub-
groups in terms of attribute variables; the cohesive records covered by a sub-
group can be used to learn a model by the pre-defined model class; then a qual-
ity measure is employed to map the performance of the model to a real-valued
quality score; finally a search algorithm is used to find the top-Q exceptional
subgroups guided by the quality score. In this process, the sources of uncer-
tainty might be included in the dependency modeling and subgroup selection
process. The observational data are usually imperfect with imbalanced feature
distribution and missing information. Hence, learning the true interactive pat-
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terns with limited data at hand, especially with limited data in subgroups, is
challenging. This challenge brings uncertainty to the capture of performance
for a given model and further influences the evaluation of its exceptionality.
We focused on analyzing the uncertainty in dependency modeling by propos-
ing probabilistic methods to model and infer the interactive patterns between
targets. In particular, we studied the following kinds of dependency modeling
with practical applications:

• Multi-modal dependency in spatio-temporal data. The behavioral pat-
terns in spatio-temporal social posts are represented by distributions of
spatial locations, time and word topics. Specific deviations across any
combination of these three distributions can indicate interesting, excep-
tional behavior of the population. Properly capturing the uncertainty
in these multi-modal interactions can greatly benefit EMM for finding
meaningful exceptional behavioral spatio-temporal patterns. Due to the
complexity of multi-modal interactions, it is difficult to estimate the in-
teractive patterns with limited data in subgroups. Hence, we proposed to
explicitly model the underlying data generating process by a Bayesian
non-parametric modeling method. The quality measure based on com-
paring posterior distributions can give us more confidence about the ex-
ceptionality of subgroups and avoid false discoveries.

• Heterogeneous and high-dimensional dependency in educational and
network data. Unknown heterogeneity across the data can lead a model
to be very effective for some subpopulations and ineffective for some
other subpopulations. The heterogeneity and complex interactions could
bring extra uncertainty to the dependency modeling as well as the eval-
uation of exceptionality. Network representation model is an effective
method that can extract and summarize such heterogeneity from high-
dimensional interactions. However, in order to capture the exception-
ality of such heterogeneous and high-dimensional dependencies, new
quality measures are required. We proposed a new quality measure
called Mean Latent Similarity Discrepancy (MLSD) based on the U-
statistic. With this measure, we are able to quantify the difference be-
tween performance of network representation models. We further pro-
posed a hypothesis testing method to validate the discoveries derived
with the guidance of this quality measure against false discoveries. We
employed this framework to analyze the fairness in the network repre-
sentation model, which can provide a new view for fairness from the
aspect of unsupervised sensitive attributes.

• Causal dependency in observational data. We studied a new kind of
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dependency for EMM. Such dependency cannot be learned from the ob-
servational data with the existing association modeling because of the
confounding bias and unobserved counterfactuals. The uncertainty in
causal dependency modeling could bring new challenges for the study
of uncertainty in EMM. In this context, we focused on estimating the
causal dependency with observational data. In particular, we proposed a
neural network framework to estimate the causal effects of a binary treat-
ment variable. We call this framework Adversarial Balancing-based rep-
resentation learning for Causal Effect Inference (ABCEI). ABCEI used
adversarial learning to balance the distributions of treatment and control
group in the latent representation space, without any assumption on the
form of the treatment selection/assignment function. ABCEI preserved
useful information for predicting causal effects under the regularization
of a mutual information estimator. The experimental results showed that
ABCEI is robust against treatment selection bias, and matches/outper-
forms the state-of-the-art approaches.

• Based on the study of causal dependency, we started investigating the
causal dependency within and without subgroups. In particular, we stud-
ied the effect of subgroup selection on the statistical quantity of interest.
We call this causal effects Local Causal Dependency. The main disad-
vantage for current interpretable methods is that they only consider the
correlation between features and the decision making process. Just be-
cause variables are strongly associated, does not mean their relation is
also causal. The reason might be that they are confounded by a third part
of variables. The integration of Local Causal Dependency and EMM
allows us to understand the determining mechanisms behind the perfor-
mance of a model. This can prevent us from being misled by spurious
associations between features and the decision making process, which
can leverage our research on explainable machine learning from the level
of correlations to the level of causations.

As a data driven framework, EMM is able to uncover the interesting re-
gions in the data space where the data generating process might be exception-
ally different with other regions. Studying the uncertainty in EMM can help us
understand the underlying mechanism of decision models. In future work, we
are going to investigate how to make use of the meta information discovered
by EMM to improve machine learning models. Based on the contributions of
our current work, we are particularly interested in the following work:

• For learning behavior analysis, we would like to make use of these dis-
covered exceptional behavioral patterns to establish an ensemble model,
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which can model both normal and exceptional learning behaviors for
the students in MOOCs. We plan to develop a prediction model that can
perform well on each part of the dataset, including the exceptional ones.

• For fairness in network representation model, we would like to integrate
the representation learning and subgroup discovery into a unified frame-
work. By doing this, we are aiming to generate fair and informative
node representations for downstream applications like fair allocation or
fair demands analysis.

• For causal effect inference, we would like to explore more connections
between relevant methods in domain adaptation (Daume III and Marcu,
2006) and counterfactual learning (Swaminathan and Joachims, 2015b)
with the methods in causal inference. A proper extension would be to
consider multiple treatment assignments or the existence of hidden con-
founders.

• For Local Causal Dependency modeling, we would like to make use of
the functional constraints to derive a causal mechanism disentangling
method. This would help us to build a generative model that considers
the true generating factor instead of spurious associations.
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